Skip to main content

Smart Polymer-Based Multicomponent Nanosystem for Enhanced Anticancer Photodynamic Therapy

  • Conference paper
  • First Online:
Soft Matter Systems for Biomedical Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 266))

Abstract

Nanotechnology is a promising approach for creation of polymer-based nanocomposite dye for Photodynamic therapy (PDT). Polymer molecules can be preferentially accumulated in tumor die, prevent photosensitizer aggregation. Thermosensitive star-like Dextran-graft-Poly-N-isopropylacrylamide copolymer (D-PNIPAM) was used as matrix for creation of multicomponent nanosystems for PDT. Au nanoparticles (AuNPs) and photosensitizer Chlorin e6 (Ce6) were incorporated into polymer. The behavior of nanosystems was studied by optical absorption, dynamic light scattering in water and in Hank’s buffer solution within temperature range of 25–40 °C. No drastic changes accompanied by aggregation process in the nanosystem in Hank’s saline solution in comparison with one prepared in water were registered. In vitro examination of the PDT activity of the prepared nanosystem on the culture of MT-4 human malignant lymphocytes revealed the death of 40% lymphocytes preincubated with nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DLS:

Dynamic Light Scattering

HPLC:

High-performance Liquid Chromatography

LCST:

Lower critical solution temperature

PDT:

Photodynamic therapy

RPMI:

Roswell Park Memorial Institute medium

SEC:

Size Exclusion Chromatography

SPR:

Surface plasmon resonance

TDA:

Triple Detector Array

TEM:

Transmission Electron Microscopy

UV:

Ultraviolet

AuNPs:

Au nanoparticles, gold nanoparticles

Ce6:

Chlorin e6

DMSO:

Dimethyl sulfoxide

D-PNIPAM:

Dextran-graft-Poly(N-isopropylacrylamide)

NIPAM:

N-isopropylacrylamide

PNIPAM:

Poly(N-isopropylacrylamide)

PS:

Photosensitizer

References

  1. Paszko E, Ehrhardt C, Senge MO et al (2011) Nanodrug applications in photodynamic therapy. Photodiagn Photodyn Ther 8:14–29. https://doi.org/10.1016/j.pdpdt.2010.12.001

    Article  Google Scholar 

  2. Dolmans D, Fukumura D, Jain R (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387. https://doi.org/10.1038/nrc1071

    Article  Google Scholar 

  3. Wang H, Xu Y, Shi J et al (2015) Photodynamic therapy in the treatment of basal cell carcinoma: a systematic review and meta-analysis. Photodermatol Photoimmunol Photomed 31:44–53. https://doi.org/10.1111/phpp.12148

    Article  Google Scholar 

  4. Kwiatkowski S, Knap B, Przystupski D et al (2018) Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomed Pharmacother 106:1098–1107. https://doi.org/10.1016/j.biopha.2018.07.049

    Article  Google Scholar 

  5. Feldman D (2016) Polymer nanocomposites in medicine. J Macromol Sci Part A Pure Appl Chem 53(1):55–62. https://doi.org/10.1080/10601325.20114.1110459

  6. Asiri IAM, Mohammad A (eds) (2018) Applications of nanocomposite materials in drug delivery. In: Woodhead Punlishing Series in Biomaterils. https://doi.org/10.1016/C2016-0-05075-1

  7. Wei M, Gao Y, Li X (2017) Stimuli-responsive polymers and their applications. Polym Chem 8:127–143.https://doi.org/10.1039/C6PY01585A

  8. Kutsevol N, Harahuts L, Nadtoka O et al (2018) Hybrid nanocomposites synthesized into stimuli responsible polymer matrices: synthesis and application prospects, chap 12. In: Fesenko O, Yatsenko L (eds) Nanophotonics, nanooptics, nanobiotechnology, and their applications. Springer proceedings in physics, vol 222, pp 167–185. https://doi.org/10.1007/978-3-030-17759-1_12

  9. Jain K, Vedarajan R, Watanabe M, Ishikiriyama M, Matsumi N (2015) Tunable LCST behavior of poly(N-isopropylacrylamide/ionic liquid) copolymers. Polym Chem 6(38):6819–6825. https://doi.org/10.1039/C5PY00998G

    Article  Google Scholar 

  10. Lanzalaco S, Armelin E 2017 Poly(N-isopropylacrylamide) and copolymers: a review on recent progresses in biomedical applications. Gels 3:314.https://doi.org/10.3390/gels3040036

  11. Najafi M, Hebels E, Hennink WE et al (2020) Poly(N‐isopropylacrylamide): physicochemical properties and biomedical applications. In: Khutoryanskiy VV, Georgiou TK (eds) Temperature - responsive polymers. Wiley, pp 1–34. https://doi.org/10.1002/9781119157830.ch1

  12. Guo Z, Li S, Wang C et al (2016) Biocompatibility and cellular uptake mechanisms of poly(N-isopropylacrylamide) in different cells. J Bioactive Compatible pol 32(1):17–31. https://doi.org/10.1177/0883911516648969

  13. Narang P, Venkatesu P (2018) Unravelling the role of polyols with increasing carbon chain length and OH groups on the phase transition behavior of PNIPAM. New J Chem 42:13708–13717. https://doi.org/10.1039/C8NJ02510J

  14. Chumachenko V, Kutsevol N, Harahuts Y et al (2017) Star-like dextran-graft-PNIPAM copolymers. Effect of internal molecular structure on the phase transition. J Mol Liq 235:77–82. https://doi.org/10.1016/j.molliq.2017.02.098

  15. Matvienko T, Sokolova V, Prylutska S et al (2019) In vitro study of the anticancer activity of various Doxorubicin-containing dispersions. Bioimpacts 9(1):57–63. https://doi.org/10.15171/bi.2019.07

  16. Yeshchenko O, Naumenko A, Kutsevol N et al (2018) Laser driven structural transformation in dextran-graft-PNIPAM copolymer/Au nanoparticles hybrid nanosystem: the role of plasmon heating and attractive optical forces. RSC Adv 8:38400–38409. https://doi.org/10.1039/C8RA07768A

  17. Yeshchenko OA, Naumenko AP, Kutsevol NV et al (2018) Anomalous inverse hysteresis of phase transition in thermosensitive dextran-graft-PNIPAM copolymer/Au nanoparticles hybrid nanosystem. J Phys Chem C 122(14):8003–8010. https://doi.org/10.1021/acs.jpcc.8b01111

  18. Kutsevol N, Glamazda A, Chumachenko V et al (2018) Behavior of hybrid thermosensitive nanosystem dextran-graft-PNIPAM/gold nanoparticles: characterization within LCTS. J Nanopart Res 20:2314. https://doi.org/10.1007/s11051-018-4331-2

  19. Kim HS, Lee DY (2018) Near-infrared-responsive cancer photothermal and photodynamic therapy using gold nanoparticles. Polymers 10(9):961. https://doi.org/10.3390/polym10090961

  20. Jain S, Hirst DG, O’Sullivan JM (2012) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85(1010):101–113. https://doi.org/10.1259/bjr/59448833

  21. Corbierre MK, Cameron NS, Sutton M et al (2005) Nanocomposites: dispersion of nanoparticles as a function of capping agent molecular weight and grafting density. Langmuir 21(13):6063–6072. https://doi.org/10.1021/la047193e

  22. Chumachenko VA, Shton IO, Shishko ED et al (2016) Branched copolymers dextran-graft-polyacrylamide as nanocarriers for delivery of gold nanoparticles and photosensitizers to tumor cells. In: Fesenko O, Yatsenko L (eds) Nanophysics, nanophotonics, surface studies, and applications. Springer proceedings in physics, vol 183, pp 379–390. https://doi.org/10.1007/978-3-319-30737-4_32

  23. Kutsevol N, Naumenko A, Harahuts Y et al (2019) New hybrid composites for photodynamic therapy: synthesis, characterization and biological study. Appl Nanosci 9:881. https://doi.org/10.1007/s13204-018-0768-y

  24. Scotti A, Liu W, Hyatt JS et al (2015) The CONTIN algorithm and its application to determine the size distribution of microgel suspensions. J Chem Phys 142:234905. https://doi.org/10.1063/1.4921686

  25. Makharza S, Auisa J, Sharkh SA et al (2010) Structural and thermal analysis of copperdoped Poly(N-isopropylacrylamide) films. Int J Pol Anal Charact 15:1–12.https://doi.org/10.1080/10236661003747031

  26. Gattuso H, Monariab A, Marazzi M (2017) Photophysics of chlorin e6: from one- and two photon absorption to fluorescence and phosphorescence. RSC Adv 7:10992. https://doi.org/10.1039/c6ra28616j

  27. Kutsevol N, Harahuts Y, Shton I et al (2018) In vitro study of toxicity of hybrid gold-polymer composites. Mol Cryst Liq Cryst 671(1):1–8. https://doi.org/10.1080/154214014.2018.1542078

  28. Harahuts Y, Pavlov V, Mokrinskaya E (2018) Anomalous change of refractive index for Au sols under laser illumination, chap 3. In: Fesenko O, Yatsenko L (eds) Nanophotonics, nanooptics, nanobiotechnology, and their applications. Springer proceedings in physics, vol 222, pp 53–72. https://doi.org/10.1007/978-3-030-17755-3_3

Download references

Acknowledgements

The authors would like to thank I. Shton and E. Shishko from R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology for in vitro experiment. The publication is based on the research provided partially by the grant support of the Ministry of the Education and Science of Ukraine, the Belarusian Republican Foundation for basic research—joint Ukrainian-Belarusian research and development projects “Design and physico-chemical properties of novel multicomponent nanosystems for the treatment and diagnostics of solid tumors” (2019–2020), and by National Research Foundation of Ukraine. Project 2020.02/0022 “Plasmon hybrid nanosystems “metal-polymer-fluorophore” with enhanced optical response for photonics and biomedical applications”.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kutsevol, N., Kuziv, Y., Bulavin, L., Chekhun, V. (2022). Smart Polymer-Based Multicomponent Nanosystem for Enhanced Anticancer Photodynamic Therapy. In: Bulavin, L., Lebovka, N. (eds) Soft Matter Systems for Biomedical Applications. Springer Proceedings in Physics, vol 266. Springer, Cham. https://doi.org/10.1007/978-3-030-80924-9_14

Download citation

Publish with us

Policies and ethics