Skip to main content

A Prym Variety with Everywhere Good Reduction over \(\mathbb {Q}(\sqrt {61})\)

  • 557 Accesses

Part of the Simons Symposia book series (SISY)

Abstract

We compute an equation for a modular abelian surface A that has everywhere good reduction over the quadratic field \(K = \mathbb {Q}(\sqrt {61})\) and that does not admit a principal polarization over K.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-80914-0_20
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-80914-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

References

  1. V. A. Abrashkin, Galois modules of group schemes of period p over the ring of Witt vectors, translated from Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 4, 691–736, 910, Math. USSR-Izv. 31 (1988), no. 1, 1–46.

    Google Scholar 

  2. Andrew R. Booker, Jeroen Sijsling, Andrew V. Sutherland, John Voight, and Dan Yasaki, A database of genus-2 curves over the rational numbers, LMS J. Comput. Math. 19 (Special Issue A) (2016), 235–254.

    Google Scholar 

  3. Armand Brumer and Kenneth Kramer, Certain abelian varieties bad at only one prime, Algebra Number Theory 12 (2018), no. 5, 1027–1071.

    CrossRef  MathSciNet  Google Scholar 

  4. Armand Brumer, Ariel Pacetti, Cris Poor, Gonzalo Tornaría, John Voight, and David S. Yuen, On the paramodularity of typical abelian surfaces, Algebra & Number Theory 13 (2019), no. 5, 1145–1195.

    CrossRef  MathSciNet  Google Scholar 

  5. Christina Birkenhake and Herbert Lange, Complex abelian varieties, volume 302 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, second edition, 2004.

    Google Scholar 

  6. Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), vol. 3–4, 235–265.

    Google Scholar 

  7. Nils Bruin, Jeroen Sijsling, and Alexandre Zotine, Numerical computation of endomorphism rings of Jacobians, Proceedings of the Thirteenth Algorithmic Number Theory Symposium, Open Book Series 2 (2019), 155–171.

    MathSciNet  Google Scholar 

  8. Henri Carayol, Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, p-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), Contemp. Math., vol. 165, Amer. Math. Soc., Providence, RI, 1994, 213–237.

    Google Scholar 

  9. W. Casselman, On abelian varieties with many endomorphisms and a conjecture of Shimura’s, Invent. Math. 12 (1971), 225–236.

    CrossRef  MathSciNet  Google Scholar 

  10. Edgar Costa, Nicolas Mascot, Jeroen Sijsling, and John Voight, Rigorous computation of the endomorphism ring of a Jacobian, Math. Comp. 88 (2019), 1303–1339.

    CrossRef  MathSciNet  Google Scholar 

  11. Lassina Dembélé, Abelian varieties with everywhere good reduction over certain real quadratic fields with small discriminant, 2019, preprint.

    Google Scholar 

  12. Lassina Dembélé and Abhinav Kumar, Examples of abelian surfaces with everywhere good reduction, Math. Ann. 364 (2016), no. 3–4, 1365–1392.

    CrossRef  MathSciNet  Google Scholar 

  13. Luis Dieulefait, Lucio Guerberoff, and Ariel Pacetti, Proving modularity for a given elliptic curve over an imaginary quadratic field, Math. Comp. 79 (2010), no. 270, 1145–1170.

    CrossRef  MathSciNet  Google Scholar 

  14. Andreas-Stephan Elsenhans, Good models for cubic surfaces, preprint at https://math.uni-paderborn.de/fileadmin/mathematik/AG-Computeralgebra/Preprints-elsenhans /red_5.pdf.

  15. Gerd Faltings, Finiteness theorems for abelian varieties over number fields, translated from Invent. Math. 73 (1983), no. 3, 349–366; ibid. 75 (1984), no. 2, 381, Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986, 9–27.

    Google Scholar 

  16. Tom Fisher, How to trivialise an algebra, 2007, http://www.faculty.jacobs-university.de/mstoll/workshop2007/fisher2.pdf.

  17. Jean-Marc Fontaine, Il n’y a pas de variété abélienne sur \(\mathbb {Z}\), Invent. Math. 81 (1985), no. 3, 515–538.

    Google Scholar 

  18. Josep González, Jordi Guàrdia, and Victor Rotger, Abelian surfaces of GL2-type as Jacobians of curves, Acta Arith. 116 (2005), no. 3, 263–287.

    CrossRef  MathSciNet  Google Scholar 

  19. Jordi Guàrdia, Jacobian nullwerte and algebraic equations, J. Algebra 253 (2002), no. 1, 112–132.

    CrossRef  MathSciNet  Google Scholar 

  20. Jeroen Hanselman, Gluing curves along their torsion, Ph.D. thesis, Universität Ulm, in progress, (2021) available at https://oparu.uni-ulm.de/xmlui/bitstream/handle/123456789/33412/Hanselman_Thesis.pdf

  21. Jeroen Hanselman and Jeroen Sijsling, gluing : Gluing curves of low genus along their torsion, https://github.com/JRSijsling/gluing.

  22. Ivanyos, Gábor, Lajos Rónyai, and Josef Schicho, Splitting full matrix algebras over algebraic number fields, J. Algebra 354 (2012), 211–223.

    CrossRef  MathSciNet  Google Scholar 

  23. Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals Math. Studies, vol. 108, Princeton University Press, 1985.

    Google Scholar 

  24. Pınar Kılıçer, Hugo Labrande, Reynald Lercier, Christophe Ritzenthaler, Jeroen Sijsling, and Marco Streng, Plane quartics over \(\mathbb {Q}\) with complex multiplication, Acta Arith. 185 (2018), no. 2, 127–156.

    CrossRef  MathSciNet  Google Scholar 

  25. Reynald Lercier, Christophe Ritzenthaler, and Jeroen Sijsling, Reconstructing plane quartics from their invariants, Discrete Comput. Geom. (2018), https://doi.org/10.1007/s00454-018-0047-4.

  26. The LMFDB Collaboration, The L-functions and Modular Forms Database, http://www.lmfdb.org, 2019, [Online; accessed 30 July 2019].

  27. Pascal Molin and Christian Neurohr, Computing period matrices and the Abel-Jacobi map of superelliptic curves, Math. Comp. 88 (2019), no. 316, 847–888.

    CrossRef  MathSciNet  Google Scholar 

  28. Christian Neurohr, Efficient integration on Riemann surfaces & applications, Ph.D. thesis, Carl-von-Ossietzky-Universität Oldenburg, 2018.

    Google Scholar 

  29. Nicolas Mascot, Computing modular Galois representations, Rendiconti Circ. Mat. Palermo, vol. 62 no 3 (2013), 451–476.

    CrossRef  MathSciNet  Google Scholar 

  30. Nicolas Mascot, Companion forms and explicit computation of \(\operatorname {PGL}_2\)-number fields with very little ramification, Journal of Algebra, vol. 509 (2018) 476–506.

    CrossRef  MathSciNet  Google Scholar 

  31. Nicolas Mascot, Jeroen Sijsling, and John Voight, Prym calculation code, https://github.com/JRSijsling/prym.

  32. Elisabeth E. Pyle, Abelian varieties over \(\mathbb Q\) with large endomorphism algebras and their simple components over \(\overline {\mathbb Q}\), Modular curves and abelian varieties, Progr. Math., vol. 224, Birkhäuser, Basel, 2004, 189–239.

    Google Scholar 

  33. Kenneth A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253 (1980), no. 1, 143–162.

    Google Scholar 

  34. René Schoof, Abelian varieties over cyclotomic fields with good reduction everywhere, Math. Ann. 325 (2003), no. 3, 413–448.

    CrossRef  MathSciNet  Google Scholar 

  35. Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, no. 1, Princeton University Press, Princeton, 1971.

    Google Scholar 

  36. Jeroen Sijsling, curve_reconstruction : Geometric and arithmetic reconstruction of curves from their period matrices, https://github.com/JRSijsling/curve_reconstruction.

  37. Richard Taylor, Representations of Galois groups associated to modular forms, Proc. ICM (Zürich, 1994), vol. 2, Birkhäuser, Basel, 1995, 435–442.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Voight .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Mascot, N., Sijsling, J., Voight, J. (2021). A Prym Variety with Everywhere Good Reduction over \(\mathbb {Q}(\sqrt {61})\) . In: Balakrishnan, J.S., Elkies, N., Hassett, B., Poonen, B., Sutherland, A.V., Voight, J. (eds) Arithmetic Geometry, Number Theory, and Computation. Simons Symposia. Springer, Cham. https://doi.org/10.1007/978-3-030-80914-0_20

Download citation