Abstract
We describe the computation of tables of Hilbert modular forms of parallel weight 2 over totally real fields.
This is a preview of subscription content, access via your institution.
Buying options
References
Alex J. Best, Jonathan Bober, Andrew R. Booker, Edgar Costa, John Cremona, Maarten Derickx, David Lowry-Duda, Min Lee, David Roe, Andrew V. Sutherland, and John Voight, Computing classical modular forms, Arithmetic Geometry, Number Theory, and Computation, eds. Jennifer S. Balakrishnan, Noam Elkies, Brendan Hassett, Bjorn Poonen, Andrew V. Sutherland, John Voight, Simons Symposia, Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80914-0_4
B. J. Birch and W. Kuyk (eds.), Modular functions of one variable IV, Lecture Notes in Mathematics, vol. 476, Springer-Verlag, 1975.
Jonathan Bober, Alyson Deines, Ariah Klages-Mundt, Benjamin LeVeque, R. Andrew Ohana, Ashwath Rabindranath, Paul Sharaba, and William Stein, A database of elliptic curves over \(\mathbb Q(\sqrt {5})\): a first report, ANTS X: Proceedings of the Tenth Algorithmic Number Theory Symposium, eds. Everett W. Howe and Kiran S. Kedlaya, Open Book Series 1, 2013, 145–166.
Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3–4, 235–265.
Nils Bruin, E. Victor Flynn, Josep González and Victor Rotger, On finiteness conjectures for modular quaternion algebras, Math. Proc. Cam. Phil. Soc. 141 (2006), 383–408.
Henri Cohen, A course in computational number theory, Springer-Verlag, Berlin, 1993.
L. Dembélé, Quaternionic Manin symbols, Brandt matrices and Hilbert modular forms, Math. Comp. 76 (2007), no. 258, 1039–1057.
L. Dembélé and S. Donnelly, Computing Hilbert modular forms over fields with nontrivial class group, Algorithmic number theory (Banff, 2008), eds. Alfred van der Poorten and Andreas Stein, Lecture notes in Comput. Sci., vol. 5011, Springer, Berlin, 2008, 371–386.
Lassina Dembélé and John Voight, Explicit methods for Hilbert modular forms, Elliptic curves, Hilbert modular forms and Galois deformations, Birkhauser, Basel, 2013, 135–198.
E. Freitag, Hilbert Modular Forms, Springer-Verlag, Berlin, 1990.
Matthew Greenberg and John Voight, Computing systems of Hecke eigenvalues associated to Hilbert modular forms, Math. Comp. 80 (2011), 1071–1092.
Markus Kirschmer and John Voight, Algorithmic enumeration of ideal classes for quaternion orders, SIAM J. Comput. (SICOMP) 39 (2010), no. 5, 1714–1747.
The LMFDB Collaboration, The L-functions and Modular Forms Database, http://www.lmfdb.org, 2016.
T. R. Shemanske and L. Walling, Twists of Hilbert modular forms, Trans. Amer. Math. Soc. 338 (1993), no. 1, 375–403.
John Voight, Computing fundamental domains for Fuchsian groups, J. Théorie Nombres Bordeaux 21 (2009), no. 2, 467–489.
John Voight, Computing automorphic forms on Shimura curves over fields with arbitrary class number, Algorithmic number theory (ANTS IX, Nancy, France, 2010), eds. Guillaume Hanrot, Francois Morain, and Emmanuel Thomé, Lecture Notes in Comp. Sci., vol. 6197, Springer, Berlin, 2010, 357–371.
Acknowledgements
The authors would like to thank Lassina Dembélé and Matthew Greenberg for useful discussions. Particular thanks also go to the organizers (John Cremona, Nicolas Mascot, Aurel Page, and Haluk Şengün) of the LMFDB Workshop at the University of Warwick, June 12–16, 2017, and to John Cremona, Aurel Page, and Dan Yasaki and for their helpful efforts at this workshop and beyond. Voight was supported by an NSF Grant (DMS-0901971) during the time that these computations were first undertaken and by an NSF CAREER Award (DMS-1151047) while work was completed.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Donnelly, S., Voight, J. (2021). A Database of Hilbert Modular Forms. In: Balakrishnan, J.S., Elkies, N., Hassett, B., Poonen, B., Sutherland, A.V., Voight, J. (eds) Arithmetic Geometry, Number Theory, and Computation. Simons Symposia. Springer, Cham. https://doi.org/10.1007/978-3-030-80914-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-80914-0_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-80913-3
Online ISBN: 978-3-030-80914-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)