Skip to main content

Imaging of the Temporal Bone in Hearing Loss

  • Chapter
  • First Online:
Head and Neck Imaging

Abstract

Direct otoscopic visualisation, audiogram evaluation and radiological assessment provide a complimentary approach for assessing the temporal bones in hearing loss. Temporal bone anatomy is intricate and complex and best evaluated on high-resolution CT imaging. However, the roles of CT and MRI imaging should both be considered with the appropriate tool utilised based on the differential diagnosis in view of the clinical history and examination. Categorising cases into conductive and sensorineural hearing loss can also help narrow the differential and direct the choice of imaging.

Illustrative examples are provided in this chapter with cases of both conductive hearing loss (e.g. osteoradionecrosis, otosclerosis, glomus tumours, temporal bone trauma and semicircular canal dehiscence) and sensorineural hearing loss (e.g. vestibular schwannomas, arachnoid cysts and congenital defects) including management plans and justification for imaging. Emphasis is also placed on discussing complex cases at a combined meeting with members of the surgical and radiology team present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Defined as hearing loss >35 DB in the better hearing ear.

  2. 2.

    Modified radical mastoidectomy is a canal wall down mastoidectomy procedure to remove diseased mastoid air cells (usually for cholesteatoma).

  3. 3.

    Mastoid obliteration: Mastoid cavities are occasionally obliterated with material such as cartilage or fat in order to decrease the size of the mastoid cavity make them easier to clean or so that they become self cleaning.

  4. 4.

    Total ossicular reconstruction—a (usually titanium) prosthesis is placed over the stapes footplate with cartilage or fascia overlying it in order to reconstruct the ossicular chain where this has been destroyed by disease (e.g. cholesteatoma) or the surgery needed to eradicate the disease.

  5. 5.

    T2 shine through effect—refers to the high signal on a restricted diffusion map which is not due to restricted diffusion but is due to high T2 signal which shines through to the DWI image. To confirm true restricted diffusion the lesion should have low signal on the ADC map [16].

References

  1. Cherko M, Nash R, Singh A, Lingam RK. Diffusion-weighted magnetic resonance imaging as a novel imaging modality in assessing treatment response in necrotizing otitis externa. Otol Neurotol. 2016;37:704–7. https://doi.org/10.1097/mao.0000000000001022.

    Article  PubMed  Google Scholar 

  2. Lingam RK, Kumar R, Vaidhyanath R. Inflammation of the Temporal Bone. Neuroimaging Clin N Am. 2019;29(1):1–17.

    Google Scholar 

  3. Homer J, Lesser T, Moffat D, Slevin N, Price R, Blackburn T. Management of lateral skull base cancer: United Kingdom National Multidisciplinary Guidelines. J Laryngol Otol. 2016;130(S2):S119–S124.

    Google Scholar 

  4. Nguyen T, Pulickal G, Singh A, Lingam R. Conductive hearing loss with a “dry middle ear cleft”-A comprehensive pictorial review with CT. Eur J Radiol. 2019;110:74–80.

    Google Scholar 

  5. Virk JS, Singh A, Lingam RK. The role of imaging in the diagnosis and management of otosclerosis. Otol Neurotol. 2013;34. https://doi.org/10.1097/mao.0b013e318298ac96.

  6. Lee T, Aviv R, Chen J, Nedzelski J, Fox A, Symons S. CT grading of otosclerosis. Am J Neuroradiol. 2009;30:1435–9. https://doi.org/10.3174/ajnr.a1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Azadarmaki R, Tubbs R, Chen DA, Shellock FG. MRI information for commonly used otologic implants. Otolaryngol Head Neck Surg. 2014;150:512–9. https://doi.org/10.1177/0194599813518306.

    Article  PubMed  Google Scholar 

  8. Kumar R, Rice S, Lingam RK. Detecting causes of pulsatile tinnitus on CT arteriography-venography: A pictorial review. Eur J Radiol. 2021;139:109722. https://doi.org/10.1016/j.ejrad.2021.109722. Epub 2021 Apr 14. PMID: 33894642.

  9. Evidence | Tinnitus: assessment and management | Guidance | NICE [Internet]. Nice.org.uk. 2021 [cited 19 July 2021]. Available from: https://www.nice.org.uk/guidance/ng155/evidence.

  10. Carey JP, Minor LB, Nager GT. Dehiscence or thinning of bone overlying the superior semicircular canal in a temporal bone survey. Arch Otolaryngol Head Neck Surg. 2000;126:137. https://doi.org/10.1001/archotol.126.2.137.

    Article  CAS  PubMed  Google Scholar 

  11. Belden CJ, Weg N, Minor LB, Zinreich SJ. CT evaluation of bone dehiscence of the superior semicircular canal as a cause of sound- and/or pressure-induced vertigo. Radiology. 2003;226:337–43. https://doi.org/10.1148/radiol.2262010897.

    Article  PubMed  Google Scholar 

  12. Tierney PA, Pracy P, Blaney SPA, Bowdler DA. An assessment of the value of the preoperative computed tomography scans prior to otoendoscopic ‘second look’ in intact canal wall mastoid surgery. Clin Otolaryngol Allied Sci. 1999;24:274–6. https://doi.org/10.1046/j.1365-2273.1999.00238.x.

    Article  CAS  PubMed  Google Scholar 

  13. Lingam RK, Bassett P. A meta-analysis on the diagnostic performance of non-echoplanar diffusion-weighted imaging in detecting middle ear cholesteatoma. Otol Neurotol. 2017;38:521–8. https://doi.org/10.1097/mao.0000000000001353.

    Article  PubMed  Google Scholar 

  14. Lingam RK, Khatri P, Hughes J, Singh A. Apparent diffusion coefficients for detection of postoperative middle ear cholesteatoma on non-echoplanar diffusion-weighted images. Radiol. 2013;269(2):504–10.

    Google Scholar 

  15. Hall A, St Leger D, Singh A, Lingam RK. The utility of computed tomography and diffusion-weighted magnetic resonance imaging fusion in cholesteatoma: illustration with a UK case series. J Laryngol Otol. 2020;8:1–6.

    Google Scholar 

  16. Lingam RK, Nash R, Majithia A, Kalan A, Singh A. Non-echoplanar diffusion weighted imaging in the detection of post-operative middle ear cholesteatoma: navigating beyond the pitfalls to find the pearl. Insights Imaging. 2016;7:669–78. https://doi.org/10.1007/s13244-016-0516-3.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nadol JB. Diameter of the cochlear nerve in deaf humans: implications for cochlear implantation. Ann Otol Rhinol Laryngol. 1992;101:988–93.

    Article  Google Scholar 

  18. Vijayasekaran S. When is the vestibular aqueduct enlarged? A statistical analysis of the normative distribution of vestibular aqueduct size. AJNR Am J Neuroradiol. 2007;28:1133–8.

    Article  CAS  Google Scholar 

  19. Madden C, Halsted M, Benton C, Greinwald J, Choo D. Enlarged vestibular aqueduct syndrome in the pediatric population. Otol Neurotol. 2003;24:625–32. https://doi.org/10.1097/00129492-200307000-00016.

    Article  PubMed  Google Scholar 

  20. Joshi VM, Navlekar SK, Kishore GR, Reddy KJ, Kumar ECV. CT and MR imaging of the inner ear and brain in children with congenital sensorineural hearing loss. RadioGraphics. 2012;32:683–98. https://doi.org/10.1148/rg.323115073.

    Article  PubMed  Google Scholar 

  21. Ahmed S, Gupta N, Hamilton JD, Garden AS, Gidley PW, Ginsberg LE. CT findings in temporal bone osteoradionecrosis. J Comput Assist Tomogr. 2014;38(5):662–6. https://doi.org/10.1097/RCT.0000000000000096.

  22. Salzman R, Hoza J, Perina V, Stárek I. Osteonecrosis of the external auditory canal associated with oral bisphosphonate therapy: case report and literature review. Otol Neurotol. 2013;34(2):209–13. https://doi.org/10.1097/mao.0b013e31827ca34d. PMID: 23444468.

  23. Heilbrun ME, Salzman KL, Glastonbury CM, Harnsberger HR, Kennedy RJ, Shelton C. External auditory canal cholesteatoma: clinical and imaging spectrum. Am J Neuroradiol. 2003;24(4):751–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elinor Warner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Warner, E., Dziedzic, M., Lingam, R.K., Singh, A. (2021). Imaging of the Temporal Bone in Hearing Loss. In: Tatla, T.S., Manjaly, J., Kumar, R., Weller, A. (eds) Head and Neck Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-80897-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80897-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80895-2

  • Online ISBN: 978-3-030-80897-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics