Skip to main content

Similarity Scaling of a Free, Round Jet in Air

  • Conference paper
  • First Online:
Progress in Turbulence IX (iTi 2021)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 267))

Included in the following conference series:

Abstract

Natural phenomena adhere to certain conservation laws that follow from fundamental symmetries in nature. We assume a simplified model for a free, round, fully developed turbulent jet in air and apply the conservation laws to this model to see what we can predict concerning the physical properties of such a jet. We compare these results to carefully conducted laser Doppler anemomenty (LDA) measurements in a fully developed turbulent round jet. We find that both first, second and third order statistical quantities are controlled by a single scaling factor—the downstream distance x.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics, vol. 1 (MIT Press, Cambridge, 1971)

    Google Scholar 

  2. H. Tennekes, J.L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, 1972)

    Book  Google Scholar 

  3. U. Frisch, Turbulence: The Legacy of A (Cambridge University Press, N. Kolmogorov, 1995)

    Book  Google Scholar 

  4. S.B. Pope, Turbulent Flows (Cambridge University Press, 2000)

    Google Scholar 

  5. L. Prandtl, Bericht über Untersuchungen zur Ausgebildeten Turbulenz. ZAMM 5(2), 136–139 (1925)

    Google Scholar 

  6. T. von Kármán, Mechanische Ähnlichkeit und Turbulenz. Nachr. Ges. Wiss. Göttingen, Fachgruppe I (Mathematik) 5, 58–76 (1930)

    MATH  Google Scholar 

  7. G.I. Taylor, Some recent developments in the study of turbulence, in Proceedings of the Fifth International Congress on Applied Mechanics, Cambridge MA, ed. by J.P. Den Hartog, H. Peters. (John Wiley, New York, 1938), pp. 294–310

    Google Scholar 

  8. Y.B. Zel’dovich, Limiting laws for turbulent flows in free convection. Zhurnal Experimental’noi Teoreticheskoi Fiziki (J. Exp. Theor. Phys.) 7(12), 1463 (1937)

    Google Scholar 

  9. W.K. George, The self-preservation of turbulent flows and its relation to initial conditions and coherent structures, in Recent Advances in Turbulence. ed. by R.E.A. Arndt, W.K. George. (Hemisphere, New York, 1989)

    Google Scholar 

  10. I. Wygnanski, H. Fiedler, Some measurements in the self-preserving jet. J. Fluid Mech. 38 part 3, 677–612 (1969)

    Google Scholar 

  11. N.R. Panchapakesan, J.L. Lumley, Turbulence measurements in axisymmetric jets of air and helium, Part 1. Air jet. J. Fluid Mech. 246, 197–223 (1993)

    Article  Google Scholar 

  12. J.H. Hussein, S.P. Capp, W.K. George, Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 31–75 (1994)

    Article  Google Scholar 

  13. P. Burattini, R.A. Antonia, L. Danaila, Similarity in the far field of a turbulent round jet. Phys. Fluids 17, 025101 (2005). https://doi.org/10.1063/1.1833414

  14. D. Ewing, B. Frohnapfel, W.K. George, J.M. Pedersen, J. Westerweel, Two-point similarity in the round jet. J. Fluid Mech. 577, 309–330 (2007)

    Article  MathSciNet  Google Scholar 

  15. P. Buchhave, C.M. Velte, Similarity scaling of the axisymmetric turbulent jet. Part 1. To be submitted (2021)

    Google Scholar 

  16. C. Zhu, Y. Tian, P. Buchhave, C.M. Velte, Experimental verification of similarity scaling of axisymmetric turbulent jet. To be submitted (2021)

    Google Scholar 

  17. E. Noether, Invariante Variationsprobleme. Nachr. D. König. Gesellsch. D. Wiss. Zu Göttingen, Math-Phys. 235–257, (1918)

    Google Scholar 

  18. F.P. Ricout, D.B. Spalding, Measurements of entrainment by axisymmetrical turbulent jets. J. Fluid Mech. 11, 21–32 (1961)

    Article  Google Scholar 

  19. C.B. da Silva, J.N. dos Reis Ricardo, J.C.F. Pereira, The intense vorticity structures near the turbulent/non-turbulent interface in a jet. J. Fluid Mech. 685, 165–190 (2011)

    Article  Google Scholar 

  20. P. Buchhave, C.M. Velte, Measurement of turbulent spatial structure and kinetic energy spectrum by exact temporal-to-spatial mapping. Phys. Fluids 29, 085109 (2017). https://doi.org/10.1063/1.4999102

Download references

Acknowledgements

Professor Poul Scheel Larsen is acknowledged for helpful discussions. Financial support from the Poul Due Jensen Foundation (Grundfos Foundation) for this research is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buchhave, P., Zhu, C., Velte, C.M. (2021). Similarity Scaling of a Free, Round Jet in Air. In: Örlü, R., Talamelli, A., Peinke, J., Oberlack, M. (eds) Progress in Turbulence IX. iTi 2021. Springer Proceedings in Physics, vol 267. Springer, Cham. https://doi.org/10.1007/978-3-030-80716-0_26

Download citation

Publish with us

Policies and ethics