Skip to main content

Cell Biology of the Life Cycle of Giardia intestinalis

  • Chapter
  • First Online:
Lifecycles of Pathogenic Protists in Humans

Part of the book series: Microbiology Monographs ((MICROMONO,volume 35))

  • 799 Accesses

Abstract

Giardia intestinalis (G. lamblia, G. duodenalis) is the agent of Giardiasis, a disease widely prevalent throughout the world. It has a life cycle involving two developmental stages: trophozoites and cysts. The cycle can be reproduced in vitro in axenic cultures, opening the possibility of further morphological, biochemical, and molecular analysis. In this chapter we review basic aspect of its maintenance and its structural organization, putting together morphological, biochemical and molecular information on structures such as (a) the cell surface, (b) the endoplasmic reticulum and its association with organelles of the endocytic pathway, (c) the mitosome, a mitochondrion-related organelle, (d) the peroxisome, (e) multivesicular bodies involved in the secretion of exosomes, (f) several components of the microtubular cytoskeleton such and the flagella, ventral disc, median body and funis, and (f) the organization of the two nuclei and their behavior during the process of cell division. The protozoan organization during the process of trophozoite-cyst transformation (encystation) and vice-versa (excitation) is also reviewed. Basic aspects of the carbohydrate, lipid, and amino acid metabolism are reviewed, as well as available information on genomic, transcriptomic, and proteomic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abodeely M, DuBois KN, Hehl A, Stefanic S, Sajid M, De Souza W, Attias M, Engel JC, Hsieh I, Fetter RD, McKerrow JH (2009) A contiguous compartment functions as endoplasmic reticulum and endosome/lysosome in Giardia lamblia. Eukaryot Cell 8:1665–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acosta-Virgen K, Chávez-Munguía B, Talamás Lara D, Guillén DL, Martínez-Higuera A, Lazcano A, Martínez-Palomo A, Espinosa-Cantellano M (2018) Giardia lamblia: identification of peroxisomal-like proteins. Exp Parasitol. https://doi.org/10.1016/j.exppara.2018.06.006

  • Adam RD, Dahlstrom EW, Martens CA, Bruno DP, Barbian KD, Ricklefs SM, Hernandez MM, Narla NP, Patel RB, Porcella SF, Nash TE (2013) Genome sequencing of Giardia lamblia genotypes A2 and B isolates (DH and Gs) and comparative analysis with the genomes of genotypes A1 and E (WB and pig). Genome Biol Evol 5:2498–2511

    Article  PubMed  PubMed Central  Google Scholar 

  • Amazonas JN, Cosentino-Gomes D, Werneck-Lacerda A, Pinheiro AA, Lanfredi-Rangel A, De Souza W, Meyer-Fernandes JR (2009) Giardia lamblia: characterization of ecto-phosphatase activities. Exp Parasitol 121:15–21

    Article  CAS  PubMed  Google Scholar 

  • Ankarklev J, Jerlstrom-Hultqvist J, Ringvist E, Troell K, Svard SG (2010) Behind the smile: cell biology and disease mechanisms of Giardia species. Nat Rev Microbiol 8:413–422

    Article  CAS  PubMed  Google Scholar 

  • Ansell BR, McConville MJ, Baker L, Korhonen PK, Emery SJ, Svärd SG, Gasser RB, Jex AR (2016) Divergent transcriptional responses to physiological and xenobiotic stress in giardia duodenalis. Antimicrob Agents Chemother 60:6034–6045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansell BR, Baker L, Emery SJ, McConville MJ, Svärd SG, Gasser RB, Jex AR (2017) Transcriptomics indicates active and passive metronidazole resistance mechanisms in three seminal Giardia lines. Front Microbiol 8:398

    Article  PubMed  PubMed Central  Google Scholar 

  • Argüello-García R, Cruz-Soto M, Romero-Montoya L, Ortega-Pierres G (2009) In vitro resistance to nitroimidazoles and benzimidazoles in Giardia duodenalis: variability and variation in gene expression. Infect Genet Evol 9:1057–1064

    Article  PubMed  CAS  Google Scholar 

  • Bauer S, Morris MT (2017) Glycosome biogenesis in trypanosomes and the de novo dilemma. PLoS Negl Trop Dis 11(4):e0005333. https://doi.org/10.1371/journal.pntd.0005333. PMID: 28426655; PMCID: PMC5398534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer B, Engelbrecht S, Bakker-Grunwald T, Scholze H (1999) Functional identification of alpha 1-giardin as an annexin of Giardia lamblia. FEMS Microbiol Lett 173:147–153

    CAS  PubMed  Google Scholar 

  • Benchimol M (2004a) Behavior of the nuclear envelope in Giardia lamblia. Parasitol Res 94:254–264. https://doi.org/10.1007/s00436-004-1211-8

    Article  PubMed  Google Scholar 

  • Benchimol M (2004b) Participation of the adhesive disc during karyokinesis in Giardia lamblia. Biol Cell 96:291–301

    Article  PubMed  Google Scholar 

  • Benchimol M (2004c) Mitosis in Giardia: multiple modes of cytokinesis. Protist 155:33–44. https://doi.org/10.1078/1434461000162

    Article  PubMed  Google Scholar 

  • Benchimol M (2005) The nuclei of Giardia lamblia - new ultrastructural observations. Arch Microbiol 183:62–72. https://doi.org/10.1007/s00203-004-0751-8

    Article  CAS  Google Scholar 

  • Benchimol M (2007) Giardia lamblia under microscopy- how this primitive protist divides. Func Dev Embryol 1(1):57–69

    Google Scholar 

  • Benchimol M, de Souza W (2011) The ultrastructure of Giardia during growth and differentiation. In: Lujan HD, Svard S (eds) Giardia - a model organism. Springer, Wien. https://doi.org/10.1007/978-3-7091-0198-8

    Chapter  Google Scholar 

  • Benchimol M, Piva B, Campanati L, de Souza W (2004) Visualization of the funis of Giardia lamblia by high-resolution field emission scanning electron microscopy--new insights. J Struct Biol 147:102–115

    Article  PubMed  Google Scholar 

  • Bernander R, Palm JE, Svärd SG (2001) Genome ploidy in different stages of the Giardia lamblia life cycle. Cell Microbiol 3:55–62

    Article  CAS  PubMed  Google Scholar 

  • Bingham AK, Meyer EA (1979) Giardia excystation can be induced in vitro in acidic solution. Nature 227:301–302

    Article  Google Scholar 

  • Bittencourt-Silvestre J, Lemgruber L, de Souza W (2010) Encystation process of Giardia lamblia: morphological and regulatory aspects. Arch Microbiol 192:259–265

    Article  CAS  PubMed  Google Scholar 

  • Blair RJ, Weller PF (1987) Uptake and esterification of arachidonic acid by trophozoites of Giardia lamblia. Mol Biochem Parasitol 25:11–18

    Article  CAS  PubMed  Google Scholar 

  • Boggild AK, Sundermann CA, Estridge BH (2002) Post-translational glutamylation and tyrosination in tubulin of tritrichomonads and the diplomonad Giardia intestinalis. Parasitol Res 88:58–62

    Article  CAS  PubMed  Google Scholar 

  • Boucher SE, Gillin FD (1990) Excystation of in vitro-derived Giardia lamblia cysts. Infect Immun 58:3516–3522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JR, Schwartz CL, Heumann JM, Dawson SC, Hoenger A (2016) A detailed look at the cytoskeletal architecture of the Giardia lamblia ventral disc. J Struct Biol 194:38–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brugerolle G (1975) Contribution a l’ _etude cytologique et phyl_etique des diplozoaires (Zoomastigophorea, Diplozoa, Dangeard 1910). V. Nouvelle interpretation de l’organisation cellulaire de Giardie. Protistologica 11:99–109

    Google Scholar 

  • Buchel LA, Gorenflot A, Chochillon C, Savel J, Gobert JG (1987) In vitro excystation of Giardia from humans: a scanning electron microscopy study. J Parasitol 73:487–493

    Article  CAS  PubMed  Google Scholar 

  • Burki F (2014) The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect Biol 6(5):a016147. https://doi.org/10.1101/cshperspect.a016147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campanati L, Bré MH, Levilliers N, de Souza W (1999) Expression of tubulin polyglycylation in Giardia lamblia. Biol Cell 91:499–506

    Article  CAS  PubMed  Google Scholar 

  • Campanati L, Holloshi A, Troester H, Spring H, Souza W, Monteiro-Leal LH (2002) Video-Microscopy observations of fast dynamic process in the protozoon Giardia lamblia. Cell Motil Cytoskeleton 51:213–214

    Article  PubMed  Google Scholar 

  • Campanati L, Troester H, Monteiro-Leal LH, Spring H, Trendelenburg MF, de Souza W (2003) Tubulin diversity in trophozoites of Giardia lamblia. Histochem Cell Biol 119:323–331

    Article  CAS  PubMed  Google Scholar 

  • Carpenter M, Assaf ZJ, Gourguechon S, Cande WZ (2012) Nuclear inheritance and genetic exchange without meiosis in the binucleate parasite Giardia intestinalis. J Cell Sci 125:2523–2532. https://doi.org/10.1242/jcs.103879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carranza PG, Lujan HD (2010) New insights regarding the biology of Giardia lamblia. Microb Infect 12:71–80

    Article  CAS  Google Scholar 

  • Carvalho KP, Monteiro-Leal LH (2004) The caudal complex of Giardia lamblia and its relation to motility. Exp Parasitol 108:154–162

    Article  CAS  PubMed  Google Scholar 

  • Castillo-Romero A, Leon-Avila G, Range AP, Zarate RC, Tovar CG, Hernandez JM (2009) Participation of actin on Giardia lamblia growth and encystation. PLoS One 4(9):e71561

    Article  CAS  Google Scholar 

  • Castillo-Romero A, Leon-Avila G, Wang CC, Rangel AP, Nuez MC, Tovar CG, Ayala-Sumuano JT, Luna-Arias JP, Hernandez JM (2010) Rab11 and actin cytoskeleton participate in Giardia lamblia encystation, Guiding the Specific Vesicles to the Cyst Wall. PLoS Negl Trop Dis 4(6):e697. https://doi.org/10.1371/journal.pntd.0000697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerva L, Nohýnková E (1992) A light microscopic study of the course of cellular division of Giardia intestinalis trophozoites grown in vitro. Folia Parasitol 39:97–104

    CAS  Google Scholar 

  • Chatterjee A, Carpentieri A, Ratner DM, Bullitt E, Costello CE, Robbins PW, Samuelson J (2010) Giardia cyst wall protein 1 is a lectin that binds to curled fibrils of the GalNAc homopolymer. PLoS Pathog 6:e1001059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chavez B, Martinez-Palomo A (1995) Giardia lamblia: freeze-fracture ultrastructure of the ventral disc plasma membrane. J Eukaryot Microbiol 42:136–141

    Article  CAS  PubMed  Google Scholar 

  • Clark JT, Holberton DV (1988) Triton-labile antigens in flagella isolated from Giardia lamblia. Parasitol Res 74:415–423

    Article  CAS  PubMed  Google Scholar 

  • Coggins JR, Schaefer FW (1984) Giardia muris: scanning electron microscopy of in vitro excystation. Exp Parasitol 57:62–67

    Article  CAS  PubMed  Google Scholar 

  • Coggins JR, Schaefer FW (1986) Giardia muris: ultrastructural analysis of in vitro excystation. Exp Parasitol 61:219–228

    Article  CAS  PubMed  Google Scholar 

  • Corrêa G, Morgado-Diaz JA, Benchimol M (2004) Centrin in Giardia lamblia —ultrastructural localization. FEMS Microbiol Lett 233:91–96

    Article  PubMed  CAS  Google Scholar 

  • Crossley R, Holberton D (1985) Assembly of 2.5 nm filaments from giardin, a protein associated with cytoskeletal microtubules in Giardia. J Cell Sci 78:205–231. PMID: 4093472

    Article  CAS  PubMed  Google Scholar 

  • Crossley R, Marshall J, Clark JT, Holberton DV (1986) Immunocytochemical differentiation of microtubules in the cytoskeleton of Giardia lamblia using monoclonal antibodies to alpha-tubulin and polyclonal antibodies to associated low molecular weight proteins. J Cell Sci 80:233–252

    Article  CAS  PubMed  Google Scholar 

  • Dagley MJ, Dolezal P, Likic VA, Smid O, Purcell AW, Buchanan SK, Tachezy J, Lithgow T (2009) The Protein Import Channel in the Outer Mitosomal Membrane of Giardia intestinalis. Mol Biol Evol 26(9):1941–1947. https://doi.org/10.1093/molbev/msp117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Traynor-Kaplan A, Reiner DS, Meng TC, Gillin FD (1991) A surface antigen of Giardia lamblia with a glycosylphosphatidylinositol anchor. J Biol Chem 266:2318–2132

    Google Scholar 

  • Das S, Castillo C, Stevens T (2001) Phospholipid remodeling/generation in Giardia: the role of the Lands cycle. Trends Parasitol 17:316–319

    Article  CAS  PubMed  Google Scholar 

  • Davids BJ, Gilbert MA, Liu Q, Reiner DS, Smith AJ, Lauwaet T, Lee C, McArthur AG, Gillin FD (2011) An atypical proprotein convertase in Giardia lamblia differentiation. Mol Biochem Parasitol 175:169–180

    Article  CAS  PubMed  Google Scholar 

  • Dawson SC, House SA (2010) Imaging and analysis of the microtubule cytoskeleton in Giardia. Methods Cell Biol 97:307–339

    Article  CAS  PubMed  Google Scholar 

  • Dawson SC, Sagolla MS, Mancuso JJ, Woessner DJ, House SA, Fritz-Laylin L, Cande WZ (2007) Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryot Cell 6:2354–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Chatterjee A, Mendez TL, Roychowdhury S, Das S (2015) The assembly of GM1 glycolipid- and cholesterol-enriched raft-like membrane microdomains is important for Giardia l encystation. Infect Immun 83:2030–2042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deolindo P, Evans-Osses I, Ramirez MI (2013) Microvesicles and exosomes as vehicles between protozoan and host cell communication. Biochem Soc Trans 41:252–257

    Article  CAS  PubMed  Google Scholar 

  • Dolezal P, Smid O, Rada P, Zubácová Z, Bursać D, Suták R, Nebesárová J, Lithgow T, Tachezy J (2005) Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci U S A 102:10924–10929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubourg A, Xia D, Winpenny JP, Naimi SA, Bouzid M, Sexton DW, Wastling JM, Paul R, Hunter PR, Tyler KM (2018) Giardia secretome highlights secreted tenascins as a key component of pathogenesis. Gigascience 7:1–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ebneter JA, Heusser SD, Schraner EM, Hehl AB, Faso C (2016) Cyst-Wall-Protein-1 is fundamental for Golgi-like organelle neogenesis and cyst-wall biosynthesis in Giardia lamblia. Nat Commun 7:13859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards MR, Schofield PJ, O’Sullivan WJ, Costello M (1992) Arginine metabolism during culture of Giardia intestinalis. Mol Biochem Parasitol 53:97–103

    Article  CAS  PubMed  Google Scholar 

  • Edwards MR, Knodler LA, Wilson JR, Schofield PJ (1993) The transport and metabolism of alanine by Giardia intestinalis. Mol Biochem Parasitol 61:49–57

    Article  CAS  PubMed  Google Scholar 

  • Ellis JE, Wyder MA, Jarrol EL, Kaneshiro ES (1996) Changes in lipid composition during in vitro encystation and fatty acid desaturase activity of Giardia lamblia. Mol Biochem Parasitol 81:13–25

    Article  CAS  PubMed  Google Scholar 

  • Elmendorf HG, Dawson SC, McCaffery JM (2003) The cytoskeleton of Giardia lamblia. Int J Parasitol 33:3–28

    Article  PubMed  Google Scholar 

  • Elmendorf HG, Rohrer SC, Khoury RS, Bouttenot RE, Nash TE (2005) Examination of a novel head-stalk protein family in Giardia lamblia characterized by the pairing of ankyrin repeats and coiled-coil domains. Int J Parasitol 35:1001–1011

    Article  CAS  PubMed  Google Scholar 

  • Embley TM, Martin W (2006) Eukaryotic evolution, changes, and challenges. Nature 440:623–630

    Article  CAS  PubMed  Google Scholar 

  • Emelyanov VV, Goldberg AV (2011) Fermentation enzymes of Giardia intestinalis, pyruvate: ferredoxin oxidoreductase and hydrogenase, do not localize to its mitosomes. Microbiology 157:1602–1611

    Article  CAS  PubMed  Google Scholar 

  • Emery-Corbin SJ, Gruttner J, Svard S (2020) Transcriptomic and proteomic analysis of Giardia intestinalis: intestinal epithelial cell interaction. In: Ortega-Pierres MG (ed) Giardia and Giardia sis. Part B, Adv Parasitol, vol 107, pp 139–172

    Chapter  Google Scholar 

  • Erlandsen SL, Feely DE (1984) Trophozoite motility and the mechanism of attachment. In: Erlandsen SL, Meyer EA (eds) Giardia and Giardia sis: pathogenesis and epidemiology. Plenum, New York, NY

    Chapter  Google Scholar 

  • Erlandsen SL, Macechko PT, van Keulen H, Jarroll EL (1996) Formation of the Giardia cyst wall: studies on extracellular assembly using immunogold labeling and high-resolution field emission SEM. J Eukaryot Microbiol 43:416–429

    Article  CAS  PubMed  Google Scholar 

  • Evans-Osses I, Mojoli A, Monguió-Tortajada M, Marcilla A, Aran V, Amorim M, Inal J, Borràs FE, Ramirez MI (2017) Microvesicles released from Giardia intestinalis disturb host-pathogen response in vitro. Eur J Cell Biol 96(2):131–142. https://doi.org/10.1016/j.ejcb.2017.01.005. Epub 2017 Jan 22. PMID: 28236495

    Article  CAS  PubMed  Google Scholar 

  • Fahimi HD, Baumgart E (1999) Current cytochemical techniques for the 341 investigation of peroxisomes: a review. J Histochem Cytochem 47:1219–1232

    Article  CAS  PubMed  Google Scholar 

  • Farthing MJ, Keusch GT, Carey MC (1985) Effects of bile and bile salts on growth and membrane lipid uptake by Giardia lamblia. Possible implications for pathogenesis of intestinal disease. J Clin Invest 76:1727–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feely DE (1986) A simplified method for in vitro excystation of Giardia muris. J Parasitol 72:474–475

    Article  CAS  PubMed  Google Scholar 

  • Feely DE, Erlandsen SL (1981) Isolation and purification of Giardia trophozoites from rat intestine. J Parasitol 67:59–64

    Article  CAS  PubMed  Google Scholar 

  • Feely DE, Erlandsen SL, Chase DG, Holberton DV, Erlandsen SL (1990) The biology of Giardia. In: Meyer EA (ed) Giardia sis. Elsevier, Amsterdam, pp 11–49

    Google Scholar 

  • Feng Y, Xiao L (2011) Zoonotic potential and molecular epidemiology of Giardia species and Giardia sis. Clin Microbiol Rev 24:110–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng XM, Cao LJ, Adam RD, Zhang XC, Lu SQ (2008) The catalyzing role of PPDK in Giardia lamblia. Biochem Biophys Res Commun 367:394–398

    Article  CAS  PubMed  Google Scholar 

  • Filice FP (1952) Studies on the cytology and life history of a Giardia from the laboratory rat. Univ Calif Public Zool 57:53–146

    Google Scholar 

  • Franzen O, Jerlstrom-Hultqvist J, Castro E, Sherwood E, Ankarklev J, Reiner DS, Palm D, Anderson JO, Anderson B, Svard SF (2009) Draft genome sequencing of Giardia inttinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathog 5(8):e1000560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franzen O, Jerlstrom-Hultqvist J, Einasson E, Ankarklevj J, Reiner DS, Amdeerson B, Svard SG (2013) Transcriptome profiling of Giardia intestinalis using strand-specific RNA-seq. PLoS Comput Biol 9:e1003000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friend DS (1966) The fine structure of Giardia muris. J Cell Biol 29:317–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadelha AP, Benchimol M, de Souza W (2015) Helium ion microscopy and ultra-high-resolution scanning electron microscopy analysis of membrane-extracted cells reveals novel characteristics of the cytoskeleton of Giardia intestinalis. J Struct Biol 190:271–278

    Article  CAS  PubMed  Google Scholar 

  • Gadelha APR, Benchimol M, de Souza W (2017) The cytoskeleton of giardia intestinalis. In: Rodriguez-Morales AJ (ed) Current topics in giardiasis. IntechOpen. https://doi.org/10.5772/intechopen.70243

    Chapter  Google Scholar 

  • Gadelha APR, Benchimol M, de Souza W (2020) The structural organization of Giardia intestinalis cytoskeleton. Adv Parasitol 107:1–23

    Article  PubMed  Google Scholar 

  • Gaechter V, Schraner E, Wild P, Hehl AB (2008) The single dynamin family protein in the primitive protozoan Giardia lamblia is essential for stage conversion and endocytic transport. Traffic 9:57–71

    Article  CAS  PubMed  Google Scholar 

  • Gargantini PR, Serradell MC, Rios DN, Tenaglia AH, Lujan HD (2016) Antigenic variation in the intestinal parasite Giardia lamblia. Curr Opin Microbiol 32:52–58

    Article  CAS  PubMed  Google Scholar 

  • Gerwig GJ, van Kuik JA, Leeflang BR, Kamerling JP, Vliegenthart JF, Karr CD, Jarroll EL (2002) The Giardia intestinalis filamentous cyst wall contains a novel beta (1-3)-N-acetyl-D-galactosamine polymer: a structural and conformational study. Glycobiology 12:499–505

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Frisardi M, Rogers R, Samuelson J (2001) How Giardia swim and divide. Infect Immun 69:7866–7872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillin FD, Reiner DS (1982) Attachment of the flagellate Giardia lamblia: role of reducing agents, serum, temperature, and ionic composition. Mol Cell Biol 2:369–377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gillin FD, Gault MJ, Hofmann AF, Gurantz D, Sauch JF (1986) Biliary lipids support serum-free growth of Giardia lamblia. Infect Immun 53:641–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillin FD, Reiner DS, Gault MJ, Douglas H, Das S, Wunderlich A, Sauch JF (1987) Encystation and expression of cyst antigens by Giardia lamblia in vitro. Science 235:1040–1043

    Article  CAS  PubMed  Google Scholar 

  • Gillin FD, Reiner DS, Boucher SE (1988) Small intestinal factors promote encystation of Giardia lamblia in vitro. Infect Immun 56:705–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillin FD, Boucher SE, Rossi SS, Reiner DS (1989) Giardia lamblia: the roles of bile, lactic acid, and pH in the completion of the life cycle in vitro. Exp Parasitol 69:164–174

    Article  CAS  PubMed  Google Scholar 

  • Grevengoed TJ, Klett EL, Coleman RA et al (2014) Giardia lamblia: incorporation of free and conjugated fatty acids into glycerol-based phospholipids acyl-CoA metabolism and partitioning. Annu Rev Nutr 34:1–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gualdrón-López M, Brennand A, Avilán L, Michels PA (2013) Translocation of solutes and proteins across the glycosomal membrane of trypanosomes; possibilities and limitations for targeting with trypanocidal drugs. Parasitology 140:1–20. https://doi.org/10.1017/S0031182012001278

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Chen Y, Zhou K, Li J (2005) Distribution of rDNA in the nucleus of Giardia lamblia: detection by Ag-I silver stain. Anal Quant Cytol Histol 27:79–82

    PubMed  Google Scholar 

  • Hagen KD, Hirakawa MP, House SA, Schwartz CL, Pham JK, Cipriano MJ, De La Torre MJ, Sek AC, Du G, Forsythe BM, Dawson SC (2011) Novel structural components of the ventral disc and lateral crest in Giardia intestinalis. PLoS Negl Trop Dis 5:e1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halpern AR, Alas GCM, Chozinski TJ, Paredez AR, Vaughan JC (2017) Hybrid structured illumination expansion microscopy reveals microbial cytoskeleton organization. ACS Nano 11:12677–12686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Collins LJ (2012) Reconstruction of sugar metabolic pathways of Giardia lamblia. Int J Proteomics 2012:980829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardin WR, Li R, Xu J, Shelton AM, Alas GCM, Minin VN, Paredez AR (2017) Myosin-independent cytokinesis in Giardia utilizes flagella to coordinate force generation and direct membrane trafficking. Proc Natl Acad Sci U S A 114(29):E5854–E5863. https://doi.org/10.1073/pnas.1705096114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez Y, Castillo C, Roychowdhury S, Hehl A, Aley SB, Das S (2007a) Clathrin-dependent pathways and the cytoskeleton network are involved in ceramide endocytosis by a parasitic protozoan, Giardia lamblia. Int J Parasitol 37:21–32

    Article  CAS  PubMed  Google Scholar 

  • Hernandez Y, Zamora G, Ray S, Chapoy J, Chavez E, Valvarde R, Williams E, Aley SB, Das S (2007b) Transcriptional analysis of three major putative phosphatidylinositol kinase genes in a parasitic protozoan, Giardia lamblia. J Eukaryot Microbiol 54:29–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez Y, Shpak M, Duarte TT, Mendez TL, Maldonado RA, Roychowdhury S, Rodrigues ML, Das S (2008) Novel role of sphingolipid synthesis genes in regulating Giardia l encystation. Infect Immun 76:2939–2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hetsko ML, McCaffery JM, Svard SG, Meng TC, Que X, Gillin FD (1998) Cellular and transcriptional changes during excystation of Giardia lamblia in vitro. Exp Parasitol 88:172–183

    Article  CAS  PubMed  Google Scholar 

  • Hillman A, Ash A, Elliot A, Lymbery A, Perez C, Thompson RCA (2016) Confirmation of a unique species of Giardia, parasitic in the quenda. Int J Parasitol Parasites Wildl 5:110–115. https://doi.org/10.1016/j.ijppaw.2016.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiltpold A, Thomas RM, Köhler P (1999) Purification and characterization of recombinant pyruvate phosphate dikinase from Giardia. Mol Biochem Parasitol 104:157–169

    Article  CAS  PubMed  Google Scholar 

  • Hoeng JC, Dawson SC, House SA, Sagolla MS, Pham JK, Mancuso JJ, Löwe J, Cande WZ (2008) High-resolution crystal structure and in vivo function of a kinesin-2 homologue in Giardia intestinalis. Mol Biol Cell 19:3124–3137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofstetrová K, Uzlíková M, Tůmová P, Troell K, Svärd SG, Nohýnková E (2010) Giardia intestinalis: aphidicolin influence on the trophozoite cell cycle. Exp Parasitol 124(2):159–166. https://doi.org/10.1016/j.exppara.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  • Holberton DV (1973) Fine structure of the ventral disc apparatus and the mechanism of attachment in the flagellate Giardia muris. J Cell Sci 13:11–41

    Article  CAS  PubMed  Google Scholar 

  • Holberton DV (1974) Attachment of Giardia: a hydrodynamic model based on flagellar activity. J Exp Biol 60:207–221

    Article  CAS  PubMed  Google Scholar 

  • Holberton DV (1981) Arrangement of subunits in microribbons from Giardia. J Cell Sci 47:167–185

    Article  CAS  PubMed  Google Scholar 

  • Holberton DV, Ward AP (1981) Isolation of the cytoskeleton from Giardia: Tubulin and a low-molecular-weight protein associated with microribbon structure. J Cell Sci 47:139–166

    Article  CAS  PubMed  Google Scholar 

  • Hrdý I, Mertens E, Nohýnková E (1993) Giardia intestinalis: detection and characterization of a pyruvate phosphate dikinase. Exp Parasitol 76:438–441

    Article  PubMed  Google Scholar 

  • Humen MA, Pérez PF, Liévin-Le Moal V (2011) Lipid raft-dependent adhesion of Giardia intestinalis trophozoites to a cultured human enterocyte-like Caco-2/TC7 cell monolayer leads to cytoskeleton-dependent functional injuries. Cell Microbiol 13:1683–1702

    Article  CAS  PubMed  Google Scholar 

  • Islinger M, Voelkl A, Fahimi H, Schrader M (2018) The peroxisome: an update on mysteries 2.0. Histochem Cell Biol 150:443–471. https://doi.org/10.1007/s00418-018-1722-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarroll EL, Muller PJ, Meyer EA, Morse SA (1981) Lipid and carbohydrate metabolism of Giardia lamblia. Mol Biochem Parasitol 2:187–196

    Article  CAS  PubMed  Google Scholar 

  • Jarroll EL, Manning P, Lindmark DG, Coggins JR, Erlandsen SL (1989) Giardia cyst wall-specific carbohydrate: evidence for the presence of galactosamine. Mol Biochem Parasitol 32:121–131

    Article  CAS  PubMed  Google Scholar 

  • Jarroll EL, van Keulen H, Paget TA, Lindmark DG (2011) Giardia metabolism. In: Luján HD, Svärd S (eds) Giardia a model organism. Springer, Wien, New York, pp 127–138

    Google Scholar 

  • Jedelský PL, Doležal P, Rada P, Pyrih J, Smíd O, Hrdý I, Sedinová M, Marcinčiková M, Voleman L, Perry AJ, Beltrán NC, Lithgow T, Tachezy J (2011) The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One 6:e17285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jerlström-Hultqvist J, Franzén O, Ankarklev J, Xu F, Nohýnková E, Andersson JO, Svärd SG, Andersson B (2010) Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate. BMC Genomics 11:543. https://doi.org/10.1186/1471-2164-11-543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez-García LF, Zavala G, Chávez-Munguía B, Ramos-Godínez MP, López-Velásques G, Segura-Valdez ML, Montañez C, Hehl AB, Argüello-García R, Ortega-Pierres G (2008) Identification of nucleoli in the early branching protist Giardia duodenalis. Int J Parasitol 38:1297–1304

    Article  PubMed  CAS  Google Scholar 

  • Jiráková K, Kulda J, Nohýnková E (2012) How nuclei of Giardia pass through cell differentiation: semi-open mitosis followed by nuclear interconnection. Protist 163(3):465–479. https://doi.org/10.1016/j.protis.2011.11.008

    Article  CAS  PubMed  Google Scholar 

  • Kabnick KS, Peattie DA (1990) In situ analysis reveals that two nuclei of Giardia lamblia are equivalent. J Cell Sci 95:353–360

    Article  PubMed  Google Scholar 

  • Kane AV, Ward HD, Keusch GT, Pereira ME (1991) In vitro encystation of Giardia lamblia: large-scale production of in vitro cysts and strain and clone differences in encystation efficiency. J Parasitol 77:974–981

    Article  CAS  PubMed  Google Scholar 

  • Karapetyan A (1962) In vitro cultivation of Giardia duodenalis. J Parasitol 48:337–340

    Article  CAS  PubMed  Google Scholar 

  • Karr CD, Jarroll EL (2004) Cyst wall synthase: N-acetylgalactosaminyltransferase activity is induced to form the novel N-acetylgalactosamine polysaccharide in the Giardia cyst wall. Microbiology 150:1237–1243

    Article  CAS  PubMed  Google Scholar 

  • Kattenbach WM, Pimenta PF, de Souza W, Pinto da Silva P (1991) Giardia duodenalis: a freeze-fracture, fracture-flip, and cytochemistry study. Parasitol Res 77:651–658

    Article  CAS  PubMed  Google Scholar 

  • Keister DB (1983) Axenic cultivation of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77:487–488

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Park SJ (2019) Role of gamma-giardin in ventral disc formation of Giardia lamblia. Parasit Vectors 12:227

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J, Sim S, Kim J, Song K, Yong TS, Park SJ (2008) Giardia lamblia EB1 is a functional homolog of yeast Bim1p that binds to microtubules. Parasitol Int 57:465–471

    Article  CAS  PubMed  Google Scholar 

  • Kulda J, Nohýnková E (1978) Giardia and Giardia sis. In: Kreier JP (ed) Parasitic protozoa. Academic, pp 69–138

    Google Scholar 

  • Kulda J, Nohýnková E (1995) Giardia in humans and animals. Academic, San Diego, CA, pp 225–422

    Google Scholar 

  • Ladeira RB, Freitas MA, Silva EF, Gontijo NF, Gomes MA (2005) Glycogen as a carbohydrate energy reserve in trophozoites of Giardia lamblia. Parasitol Res 96:418–421

    Article  PubMed  Google Scholar 

  • Lanfredi-Rangel A, Attias M, Carvalho TMU, Kattenbach WM, De Souza W (1998) The peripheral vesicles of trophozoites of the primitive protozoan Giardia lamblia may correspond to early and late endosomes and lysosomes. J Struct Biol 123:225–235

    Article  CAS  PubMed  Google Scholar 

  • Lanfredi-Rangel A, Diniz JA Jr, de Souza W (1999a) Presence of a protrusion on the ventral disk of adhered trophozoites of Giardia lamblia. Parasitol Res 85:951–955

    Article  CAS  PubMed  Google Scholar 

  • Lanfredi-Rangel A, Kattenbach W, Diniz J, De Souza W (1999b) Trophozoites of Giardia lamblia may have a Golgi-like structure. Microbiol Lett 181:245–251

    Article  CAS  Google Scholar 

  • Lanfredi-Rangel A, Attias M, Reiner DS, Gillin FD, De Souza W (2003) Fine structure of the biogenesis of Giardia lamblia encystation secretory vesicles. J Struct Biol 143:153–163

    Article  CAS  PubMed  Google Scholar 

  • Lara-Martínez R, Segura-Valdez ML, La Mora IDLMD, López-Velazquez G, Jiménez-García LF (2016) Morphological studies of nucleologenesis in Giardia lamblia. Anat Rec 299:549–556

    Article  Google Scholar 

  • Larson MH, Gilbert LA, Wang X, Lom WA, Weissman JS, Oi LS (2013) CRISP interference (CRISPi) for sequence-specific control of gene expression. Nat Protoc 8:218–2196

    Article  CAS  Google Scholar 

  • Lasek-Nesselquist E, Welch DM, Thompson RCA, Steuart RF, Sogin ML (2009) Genetic exchange within and between assemblages of Giardia duodenalis. J Eukaryot Microbiol 56:504–518

    Article  CAS  PubMed  Google Scholar 

  • Lauwaet T, Smith AJ, Reiner DS, Romijn EP, Wong CC, Davids BJ, Shah SA, Yates JR, Gillin FD (2011) Mining the Giardia genome and proteome for conserved and unique basal body proteins. Int J Parasitol 41:1079–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Blancq SM, Adam RD (1998) Structural basis of karyotype heterogeneity in Giardia lamblia. Mol Biochem Parasitol 97:199–208

    Article  PubMed  Google Scholar 

  • Lenaghan SC, Davis CA, Henson WR, Zhang Z, Zhang M (2011) High-speed microscopic imaging of flagella motility and swimming in Giardia lamblia trophozoites. Proc Natl Acad Sci U S A 108:550–558

    Article  Google Scholar 

  • Lopez AB, Hossain MT, van Keulen H (2002) Giardia intestinalis glucosamine 6-phosphate isomerase: the key enzyme to encystment appears to be controlled by ubiquitin attachment. J Eukaryot Microbiol 49:134–136

    Article  CAS  PubMed  Google Scholar 

  • Lourenço D, Andrade IS, Terra LL, Guimarães PR, Zingali RB, de Souza W (2012) Proteomic analysis of the ventral disc of Giardia lamblia. BMC Res Notes 5:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lujan HD, Nash TE (1994) The uptake and metabolism of cysteine by Giardia lamblia trophozoites. J Eukaryot Microbiol 41:169–175

    Article  CAS  PubMed  Google Scholar 

  • Lujan HD, Marotta A, Mowatt MR, Sciay N, Lippincott-Schwartz J, Nash TE (1995) Developmental induction of Golgi structure and function in the primitive eukaryote Giardia lamblia. J Biol Chem 270:4612–4618

    Article  CAS  PubMed  Google Scholar 

  • Lujan HD, Mowatt MR, Byrd LG, Nash TE (1996) Cholesterol starvation induces differentiation of the intestinal parasite Giardia lamblia. Proc Natl Acad Sci U S A 93:7628–7633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lujan HD, Mowatt MR, Nash TE (1997) Mechanisms of Giardia lamblia differentiation into cysts. Microbiol Mol Biol Rev 61:294–304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lujan HD, Mowatt MR, Nash TE (1998) The molecular mechanisms of Giardia encystation. Parasitol Today 14:446–450

    Article  CAS  PubMed  Google Scholar 

  • Lyu Z, Shao J, Xue M, Ye Q, Chen B, Qin Y, Wen J (2018) A new species of Giardia Künstler, 1882 (Sarcomastigophora: Hexamitidae) in hamsters. Parasit Vectors 11:202. https://doi.org/10.1186/s13071-018-2786-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma’ayeh SY, Liu J, Peirasmaki D, Hörnaeus K, Bergström Lind S, Grabherr M, Bergquist J, Svärd SG (2017) Characterization of the Giardia intestinalis secretome during interaction with human intestinal epithelial cells: The impact on host cells. PLoS Negl Trop Dis 11:e0006120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma’ayeh SY, Knörr L, Sköld K, Garnham A, Ansell BRE, Jex AR, Svärd SG (2018) Responses of the differentiated intestinal epithelial cell line Caco-2 to infection with the Giardia intestinalis GS isolate. Front Cell Infect Microbiol 8:244. https://doi.org/10.3389/fcimb.2018.00244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma'ayeh SY, Knörr L, Svärd SG (2015) Transcriptional profiling of Giardia intestinalis in response to oxidative stress. Int J Parasitol 45:925–938

    Article  CAS  PubMed  Google Scholar 

  • Macarisin D, O'Brien C, Fayer R, Bauchan G, Jenkins M (2012) Immunolocalization of β- and δ-giardin within the ventral disk in trophozoites of Giardia duodenalis using multiplex laser scanning confocal microscopy. Parasitol Res 111:241–248

    Article  PubMed  Google Scholar 

  • Macechko PT, Steimle PA, Lindmark DG, Erlandsen SL, Jarroll EL (1992) Galactosamine-synthesizing enzymes are induced when Giardia encyst. Mol Biochem Parasitol 56:301–309

    Article  CAS  PubMed  Google Scholar 

  • Macrae IJ, Li F, Zhou K, Cande WZ, Doudna JÁ (2006) Structure of Dicer and mechanistic implications for RNAi. Cold Spring Harb Symp Quant Biol 71:73–80

    Article  CAS  PubMed  Google Scholar 

  • Magiera MM, Janke C (2014) Post-translational modifications of tubulin. Curr Biol 24:R351–R354

    Article  CAS  PubMed  Google Scholar 

  • Maia-Brigagão C, Gadelha AP, de Souza W (2013) New associated structures of the anterior flagella of Giardia duodenalis. Microsc Microanal 19:1374–1376. https://doi.org/10.1017/S1431927613013275

    Article  CAS  PubMed  Google Scholar 

  • Makiuchi T, Nozaki T (2014) Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie 100:3–17

    Article  CAS  PubMed  Google Scholar 

  • Malik SB, Pightling AW, Stefaniak LM, Schurko AM, Logsdon JM Jr (2008) An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLoS One 3:e2879

    Article  PubMed Central  Google Scholar 

  • Manning P, Erlandsen SL, Jarroll EL (1992) Carbohydrate and amino acid analyses of Giardia muris cysts. J Protozool 39:290–296

    Article  CAS  PubMed  Google Scholar 

  • Markova K, Uzlikova M, Tumova P, Jirakova K, Hagen G, Kulda J, Nohynkova E (2016) Absence of a conventional spindle mitotic checkpoint in the binucleated single-celled parasite Giardia intestinalis. Eur J Cell Biol 95(10):355–367. https://doi.org/10.1016/j.ejcb.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  • Marshall J, Holberton DV (1993) Sequence and structure of a new coiled-coil protein from a microtubule bundle in Giardia. J Mol Biol 231:521–530

    Article  CAS  PubMed  Google Scholar 

  • Martin W (2007) Anaerobic eukaryotes in pursuit of a phylogenetic normality: the evolution of hydrogenosomes and mitosomes. In: Tachezy J (ed) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Microbiology monographs. Springer, pp 1–20

    Google Scholar 

  • Martincová E, Voleman L, Pyrih J, Žárský V, Vondráčková P, Kolísko M, Tachezy J, Doležal P (2015) Probing the biology of Giardia intestinalis mitosomes using in vivo enzymatic tagging. Mol Cell Biol 35:2864–2874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mastronicola D, Falabella M, Testa F, Pucillo LP, Texeira M, Sarti P, Saraiva LM, Giuffré A (2014) Functional characterization of peroxiredoxins from the human protozoan parasite Giardia intestinalis. PLoS Negl Trop Dis 8(1):e2631. https://doi.org/10.1371/journal.pntd.0002631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCaffery JM, Gillin FD (1994) Giardia lamblia: ultrastructural basis of protein transport during growth and encystation. Exp Parasitol 29:220–235

    Article  Google Scholar 

  • McInally SG, Kondev J, Dawson SC (2019) Length-dependent disassembly maintains four different flagellar lengths in Giardia. elife 19:e48694

    Article  Google Scholar 

  • Mendis AH, Thompson RC, Reynoldson JA, Armson A, Meloni BP, Gunsberg S (1992) The uptake and conversion of L-[U14C-] aspartate and L-[U14C-] alanine to 14CO2 by intact trophozoites of Giardia duodenalis. Comp Biochem Physiol B 102:235–239

    Article  CAS  PubMed  Google Scholar 

  • Meng TC, Aley SB, Svard SG, Smith MW, Huang B, Kim J et al (1996) Immunolocalization and sequence of caltractin/centrin from the early branching eukaryote Giardia lamblia. Mol Biochem Parasitol 79:103–108

    Article  CAS  PubMed  Google Scholar 

  • Mertens E (1990) Occurrence of pyrophosphate: fructose 6-phosphate 1-phosphotransferase in Giardia lamblia trophozoites. Mol Biochem Parasitol 40:147–149

    Article  CAS  PubMed  Google Scholar 

  • Meyer EA (1970) Isolation and axenic cultivation of Giardia trophozoites from the rabbit, chinchilla, and cat. Exp Parasitol 27:179–183

    Article  CAS  PubMed  Google Scholar 

  • Midlej V, Benchimol M (2009) Giardia lamblia behavior during encystment: how morphological changes in shape occur. Parasitol Int 58:72–80

    Article  PubMed  Google Scholar 

  • Midlej V, Meinig I, de Souza W, Benchimol M (2013) A new set of carbohydrate-positive vesicles in encysting Giardia lamblia. Protist 164:261–271

    Article  CAS  PubMed  Google Scholar 

  • Midlej V, Penha L, Silva R, de Souza W, Benchimol M (2016) Mitosomal chaperone modulation during the life cycle of the pathogenic protist Giardia intestinalis. Eur J Cell Biol 95:531–542. https://doi.org/10.1016/j.ejcb.2016.08.005

    Article  CAS  PubMed  Google Scholar 

  • Midlej V, de Souza W, Benchimol M (2017) The endomembrane system of Giardia intestinalis. In: Rodriguez-Morales AJ (ed) Current topics in Giardia sis. INTECH, pp 87–108

    Google Scholar 

  • Midlej V, de Souza W, Benchimol M (2019) The peripheral vesicles gather multivesicular bodies with different behavior during the Giardia intestinalis life cycle. J Struct Biol 207:301–311

    Article  CAS  PubMed  Google Scholar 

  • Morgan RO, Fernandez MP (1995) Molecular phylogeny of annexins and identification of a primitive homologue in Giardia lamblia. Mol Biol Evol 12:967–979

    CAS  PubMed  Google Scholar 

  • Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, Best AA, Cande WZ, Chen F, Cipriano MJ et al (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317:1921–1926

    Article  CAS  PubMed  Google Scholar 

  • Nash TE, Mowatt MR (1993) Variant-specific surface proteins of Giardia lamblia are zinc-binding proteins. Proc Natl Acad Sci U S A 90:5489–5493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuhaus A, Eggeling C, Erdmann R, Schliebs W (2016) Why do peroxisomes associate with the cytoskeleton? Biochim Biophys Acta 1863(5):1019–1026. https://doi.org/10.1016/j.bbamcr.2015.11.022

    Article  CAS  PubMed  Google Scholar 

  • Nohýnková E, Dráber P, Reischig J, Kulda J (2000) Localization of gamma-tubulin in interphase and mitotic cells of a unicellular eukaryote, Giardia intestinalis. Eur J Cell Biol 79:438–445

    Article  PubMed  Google Scholar 

  • Nohýnková E, Tumová P, Kulda J (2006) Cell division of Giardia intestinalis: flagellar developmental cycle involves transformation and exchange of flagella between mastigonts of a diplomonad cell. Euk Cell 5:753–761

    Article  CAS  Google Scholar 

  • Nosala C, Dawson SC (2018) The critical role of the cytoskeleton in the pathogenesis of Giardia. Curr Clin Microbiol Rep 2:155–162

    Article  Google Scholar 

  • Nosala C, Hagen KD, Dawson SC (2018) Disc-o-Fever: getting down with Giardia’s groovy microtubule organelle. Trends Cell Biol 28:99–112. PMCID: PMC7864154

    Article  CAS  PubMed  Google Scholar 

  • Novikoff AB, Novikoff P, Davis C, Quintana N (1972) Studies on 400 microperoxisomes. II. A cytochemical method for light and electron microscop. J Histochem Cytochem 20:1006–1023

    Article  CAS  PubMed  Google Scholar 

  • Paget TA, Raynor MH, Shipp DW, Lloyd D (1990) Giardia lamblia produces alanine anaerobically but not in the presence of oxygen. Mol Biochem Parasitol 42:63–67

    Article  CAS  PubMed  Google Scholar 

  • Paget TA, Kelly ML, Jarroll EL, Lindmark DG, Lloyd D (1993) The effects of oxygen on fermentation in Giardia lamblia. Mol Biochem Parasitol 57:65–71

    Article  CAS  PubMed  Google Scholar 

  • Palm D, Weiland M, McArthur AG, Winiecka-Krusnell J, Cipriano MJ, Birkeland SR, Pacocha SE, Davids B, Gillin F, Linder E, Svärd S (2005) Developmental changes in the adhesive disk during Giardia differentiation. Mol Biochem Parasitol 141:199–207

    Article  CAS  PubMed  Google Scholar 

  • Paredez AR, Assaf ZJ, Sept D, Timofejeva L, Dawson SC, Wang CJ, Cande WZ (2011) An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins. Proc Natl Acad Sci U S A 108:6151–6156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Schofield PJ, Edwards MR (1997) Giardia intestinalis: volume recovery in response to cell swelling. Exp Parasitol 86:19–28

    Article  CAS  PubMed  Google Scholar 

  • Pathuri P, Nguyen ET, Ozorowski G, Svärd SG, Luecke H (2009) Apo and calcium-bound crystal structures of cytoskeletal protein alpha-14 giardin (annexin E1) from the intestinal protozoan parasite Giardia lamblia. J Mol Biol 385:1098–1112

    Article  CAS  PubMed  Google Scholar 

  • Pegado MG, de Souza W (1994) Role of surface components in the interaction of process of Giardia duodenalis with epithelial cells in vitro. Parasitol Res 80:320–326

    Article  CAS  PubMed  Google Scholar 

  • Pham JK, Nosala C, Scott EY, Nguyen KF, Hagen KD, Starcevich HN, Dawson SC (2017) Transcriptomic profiling of high-density giardia foci encysting in the murine proximal intestine. Front Cell Infect Microbiol 7:227. PMCID: PMC5450421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phillips NF, Li Z (1995) Kinetic mechanism of pyrophosphate-dependent phosphofructokinase from Giardia lamblia. Mol Biochem Parasitol 73:43–51

    Article  CAS  PubMed  Google Scholar 

  • Pickar-Oliver A, Gersbach CA (2019) The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol 20:490–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piva B, Benchimol M (2004) The median body of Giardia lamblia: an ultrastructural study. Biol Cell 96:735–746

    Article  PubMed  Google Scholar 

  • Poxleitner MK, Carpenter ML, Mancuso JJ, Wang C-JR, Dawson SC, Cande WZ (2008) Evidence for karyogamy and exchange of genetic material in the binucleate intestinal parasite Giardia intestinalis. Science 319:1530–1533

    Article  CAS  PubMed  Google Scholar 

  • Pradhan P, Lundgren SW, Wilson WA, Brittingham A (2012) Glycogen storage and degradation during in vitro growth and differentiation of Giardia intestinalis. J Parasitol 98:442–444

    Article  PubMed  Google Scholar 

  • Prucca CG, Slavin I, Quiroga R, Elias EV, Rivero FD, Saura A, Carranza PG, Lujan HD (2008) Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature 456:750–754

    Article  CAS  PubMed  Google Scholar 

  • Ramesh MA, Malik SB, Logsdon JM Jr (2005) A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr Biol 15:185–191

    CAS  PubMed  Google Scholar 

  • Reiner DS, Douglas H, Gillin FD (1989) Identification and localization of cyst-specific antigens of Giardia lamblia. Infect Immun 57:963–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiner DS, McCaffery M, Gillin FD (1990) Sorting of cyst wall proteins to a regulated secretory pathway during differentiation of the primitive eukaryote, Giardia lamblia. Eur J Cell Biol 53:142–1453

    CAS  PubMed  Google Scholar 

  • Rice EW, Schaefer FW (1981) Improved in vitro excystation procedure for Giardia lamblia cysts. J Clin Microbiol 14:709–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringqvist E, Palm JE, Skarin H, Hehl AB, Weiland M, Davids BJ, Reiner DS, Griffiths WJ, Eckmann L, Gillin FD, Svärd SG (2008) Release of metabolic enzymes by Giardia in response to interaction with intestinal epithelial cells. Mol Biochem Parasitol 159:85–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivero FD, Muller D, Lujan HD (2010a) Secretory events during Giardia encystation. In: de Souza W (ed) Structures and organelles in pathogenic protozoa. Microbiology monographs. Springer, pp 195–225

    Chapter  Google Scholar 

  • Rivero MR, Vranych CV, Bisbal M, Maletto BA, Ropolo AS, Touz MC (2010b) Adaptor protein 2 regulates receptor-mediated endocytosis and cyst formation in Giardia lamblia. Biochem J 428:33–45

    Article  CAS  PubMed  Google Scholar 

  • Ryan U, Zahedi A (2019) Molecular epidemiology of Giardia sis from a veterinary perspective. Adv Parasitol 06:209–254. https://doi.org/10.1016/bs.apar.2019.07.002

    Article  Google Scholar 

  • Sagolla MS, Dawson SC, Mancuso JJ, Cande WZ (2006) Three-dimensional analysis of mitosis and cytokinesis in the binucleate parasite Giardia intestinalis. J Cell Sci 119:4889–4900

    Article  CAS  PubMed  Google Scholar 

  • Sánchez LB (1998) Aldehyde dehydrogenase (CoA-acetylating) and the mechanism of ethanol formation in the amitochondriate protist, Giardia lamblia. Arch Biochem Biophys 354:57–64

    Article  PubMed  Google Scholar 

  • Sanchez LB, Müller M (1996) Purification and characterization of the acetate forming enzyme, acetyl-CoA synthetase (ADP-forming) from the amitochondriate protist, Giardia lamblia. FEBS Lett 378:240–244

    Article  CAS  PubMed  Google Scholar 

  • Saraiya AA, Li W, Wu J, Chang CH, Wang CC (2014) The microRNAs in an ancient protist repress the variant-specific surface protein expression by targeting the entire coding sequence. PLoS Pathog 10:e1003791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schofield PJ, Costello M, Edwards MR, O'Sullivan WJ (1990) The arginine dihydrolase pathway is present in Giardia intestinalis. Int J Parasitol 20:697–699

    Article  CAS  PubMed  Google Scholar 

  • Schofield PJ, Edwards MR, Kranz P (1991) Glucose metabolism in Giardia intestinalis. Mol Biochem Parasitol 45:39–47

    Article  CAS  PubMed  Google Scholar 

  • Schofield PJ, Edwards MR, Matthews J, Wilson JR (1992) The pathway of arginine catabolism in Giardia intestinalis. Mol Biochem Parasitol 51:29–36

    Article  CAS  PubMed  Google Scholar 

  • Schupp DG, Januschka MM, Sherlock LA, Stibbs HH, Meyer EA, Bemrick WJ, Erlandsen SL (1988) Production of viable Giardia cysts in vitro: determination by fluorogenic dye staining, excystation, and animal infectivity in the mouse and Mongolian gerbil. Gastroenterology 95:1–10

    Article  CAS  PubMed  Google Scholar 

  • Schwartz CL, Heumann JM, Dawson SC, Hoenger A (2012) A detailed, hierarchical study of Giardia lamblia’s ventral disc reveals novel microtubule-associated protein complexes. PLoS One 7:e43783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheffield HG, Bjorvatn B (1977) Ultrastructure of the cyst of Giardia lamblia. Am J Trop Med Hyg 26:23–30

    Article  CAS  PubMed  Google Scholar 

  • Singer SM, Elmendorf HG, Conrad JT, Nash TE (2001) Biological selection of variant-specific surface proteins in Giardia lamblia. J Infect Dis 183:119–124

    Article  CAS  PubMed  Google Scholar 

  • Sinha A, Datta SP, Ray A, Sarkar S (2015) A reduced VWA domain-containing proteasomal ubiquitin receptor of Giardia lamblia localizes to the flagellar pore regions in a microtubule-dependent manner. Parasit Vectors 8:120. https://doi.org/10.1186/s13071-015-0737-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Slavin I, Saura A, Carranza PG, Touz MC, Nores MJ, Luján HD (2002) Dephosphorylation of cyst wall proteins by a secreted lysosomal acid phosphatase is essential for excystation of Giardia lamblia. Mol Biochem Parasitol 122:95–98

    Article  CAS  PubMed  Google Scholar 

  • Smith AJ, Lauwaet T, Davids BJ, Gillin FD (2012) Giardia lamblia Nek1 and Nek2 kinases affect mitosis and excystation. Int J Parasitol 42:411–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soloviev MM (1963) Studies on the division of Lamblia duodenalis in cultures. Med Parasitol Parazit Bolezni 32:96–101. (in Russian)

    Google Scholar 

  • Soltys BJ, Gupta RS (1994) Immunoelectron microscopy of Giardia lamblia cytoskeleton using antibody to acetylated alpha-tubulin. J Eukaryot Microbiol 41:625–632

    Article  CAS  PubMed  Google Scholar 

  • Soltys BJ, Falah M, Gupta RS (1996) Identification of endoplasmic reticulum in the primitive eukaryote Giardia lamblia using cryoelectron microscopy and antibody to Bip. J Cell Sci 109:1909–1917

    Article  CAS  PubMed  Google Scholar 

  • Sonda S, Morf L, Bottova I, Baetschmann H, Rehrauer H, Caflisch A, Hakimi MA, Hehl AB (2010) Epigenetic mechanisms regulate stage differentiation in the minimized protozoan Giardia lamblia. Mol Microbiol 76:48–67

    Article  CAS  PubMed  Google Scholar 

  • Sprong H, Cacciò SM, van der Giessen JWB (2009) ZOOPNET Network and Partners. Identification of zoonotic genotypes of Giardia duodenalis. PLoS Negl Trop Dis 3:e558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spycher C, Herman EK, Morf L, Qi W, Rehrauer H, Aquino Fournier C, Dacks JB, Hehl AB (2013) An ER-directed transcriptional response to unfolded protein stress in the absence of conserved sensor-transducer proteins in Giardia lamblia. Mol Microbiol 88:754–771

    Article  CAS  PubMed  Google Scholar 

  • Stadelmann B, Merino MC, Persson L, Svärd SG (2012) Arginine consumption by the intestinal parasite Giardia intestinalis reduces proliferation of intestinal epithelial cells. PLoS One 7:e45325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens TL, Gibson GR, Adam R, Maier J, Allison-Ennis M, Das S (1997) Uptake and cellular localization of exogenous lipids by Giardia lamblia, a primitive eukaryote. Exp Parasitol 86:133–143

    Article  CAS  PubMed  Google Scholar 

  • Sun CH, McCaffery JM, Reiner DS, Gillin FD (2003) Mining the Giardia lamblia genome for new cyst wall proteins. J Biol Chem 278(24):21701–21708. https://doi.org/10.1074/jbc.M302023200

    Article  CAS  PubMed  Google Scholar 

  • Szkodowska A, Muller MC, Linke C, Scholze H (2002) Annexin XXI (ANX21) of Giardia lamblia has sequence motifs uniquely shared by Giardia l annexins and is specifically localized in the flagella. J Biol Chem 277:25703–25706

    Article  CAS  PubMed  Google Scholar 

  • Tachezy J, Smíd O (2007) Mitosomes in parasitic protists. In: Tachezy J (ed) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Springer, pp 201–230

    Google Scholar 

  • Tachezy J, Sanchez LB, Muller M (2001) Mitochondrial type iron-sulfur cluster 15 assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol Biol Evol 18:1919–1928

    Article  CAS  PubMed  Google Scholar 

  • Teodorovic S, Braverman JM, Elmendorf HG (2007) Unusually low levels of genetic variation among Giardia lamblia isolates. Eukaryot Cell 6:1421–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian XF, Yang ZH, Shen H, Adam RD, Lu SQ (2010) Identification of the nucleoli of Giardia lamblia with TEM and CFM. Parasitol Res 106:789–793

    Article  PubMed  Google Scholar 

  • Touz MC, Nores MJ, Slavin I, Carmona C, Conrad JT, Mowatt MR, Nash TE, Coronel CE, Luján HD (2002) The activity of a developmentally regulated cysteine proteinase is required for cyst wall formation in the primitive eukaryote Giardia lamblia. J Biol Chem 277:8474–8481

    Article  CAS  PubMed  Google Scholar 

  • Touz MC, Kulakova L, Nash TE (2004) Adaptor protein complex 1 mediates the transport of lysosomal proteins from a Golgi-like organelle to peripheral vacuoles in the primitive eukaryote Giardia lamblia. Mol Biol Cell 15:3053–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touz MC, Conrad JT, Nash TE (2005) A novel palmitoyl acyltransferase controls surface protein palmitoylation and cytotoxicity in Giardia lamblia. Mol Microbiol 58:999–1011

    Article  CAS  PubMed  Google Scholar 

  • Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32:1013–1021. https://doi.org/10.1046/j.1365-2958.1999.01414

    Article  CAS  PubMed  Google Scholar 

  • Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, van der Giezen M, Hernández M, Müller M, Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426:172–176. https://doi.org/10.1038/nature01945

    Article  CAS  PubMed  Google Scholar 

  • Townson SM, Upcroft JA, Upcroft P (1996) Characterisation and purification of pyruvate: ferredoxin oxidoreductase from Giardia duodenalis. Mol Biochem Parasitol 79:183–193

    Article  CAS  PubMed  Google Scholar 

  • Tůmová P, Kulda J, Nohýnková E (2007) Cell division of Giardia intestinalis: assembly and disassembly of the adhesive disc, and the cytokinesis. Cell Motil Cytoskel 64:288–298

    Article  Google Scholar 

  • Tůmová P, Uzlíková M, Wanner G, Nohýnková E (2015) Structural organization of very small chromosomes: study on a single-celled evolutionary distant eukaryote Giardia intestinalis. Chromosoma 124(1):81–94. https://doi.org/10.1007/s00412-014-0486-5

    Article  PubMed  Google Scholar 

  • Vahrmann A, Sarić M, Koebsch I, Scholze H (2008) Alpha14-Giardin (annexin E1) is associated with tubulin in trophozoites of Giardia lamblia and forms local slubs in the flagella. Parasitol Res 102:321–326

    Article  CAS  PubMed  Google Scholar 

  • Vermathen M, Müller J, Furrer J, Müller N, Vermathen P (2018) 1H HR-MAS NMR spectroscopy to study the metabolome of the protozoan parasite Giardia lamblia. Talanta 188:429–441

    Article  CAS  PubMed  Google Scholar 

  • Visvesvara GS (1980) Axenic growth of Giardia lamblia in Diamond’s TPS-1 medium. Trans R Soc Trop Med Hyg 74:213–215

    Article  CAS  PubMed  Google Scholar 

  • Voleman L, Najdrová V, Ástvaldsson A, Tůmová P, Einarsson E, Švindrych Z, Hagen GM, Tachezy J, Svärd SG, Doležal P (2017) Giardia intestinalis mitosomes undergo synchronized fission but not fusion and are constitutively associated with the endoplasmic reticulum. BMC Biol 15:27. https://doi.org/10.1186/s12915-017-0361-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vranych CV, Rivero MR, Merino MC, Mayol GF, Zamponi N, Maletto BA, Pistoresi-Palencia MC, Touz MC, Rópolo AS (2014) SUMOylation and deimination of proteins: two epigenetic modifications involved in Giardia encystation. Biochim Biophys Acta 1843:1805–1817

    Article  CAS  PubMed  Google Scholar 

  • Ward HD, Alroy B, Lev BI, Keusch GT, Pereira MEA (1985) Identification of chitin as a structural component of Giardia cysts. Infect Immun 49:629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward HD, Alroy J, Lev BI, Keusch GT, Pereira ME (1988) Biology of Giardia lamblia. Detection of N-acetyl-D-glucosamine as the only surface 157 saccharide moiety and identification of two distinct subsets of trophozoites by lectin binding. J Exp Med 167:73–88

    Article  CAS  PubMed  Google Scholar 

  • Ward W, Alvarado L, Rawlings ND, Engel JC, Franklin C, McKerrow JH (1997) A primitive enzyme for a primitive cell: the protease required for excystation of Giardia. Cell 89:437–444

    Article  CAS  PubMed  Google Scholar 

  • Weber K, Geisler N, Plessmann U, Bremerich A, Lechtreck KF, Melkonian M (1993) SF-assemblin, the structural protein of the 2-nm filaments from striated microtubule-associated fibers of algal flagellar roots, forms a segmented coiled-coil. J Cell Sci 12:837–845

    Google Scholar 

  • Weber K, Schneider A, Westermann S, Muller N, Plessmann U (1997) Posttranslational modifications of alpha-and beta-tubulin in Giardia lamblia, an ancient eukaryote. FEBS Lett 419:87–91

    Article  CAS  PubMed  Google Scholar 

  • Weiland ME, McArthur AG, Morrison HG, Sogin ML, Svärd SG (2005) Annexin-like alpha giardins: a new cytoskeletal gene family in Giardia lamblia. Int J Parasitol 35:617–626

    Article  CAS  PubMed  Google Scholar 

  • Wiesehahn GP, Jarrol EL, Lindmark DG, Meyer EA, Hallick LM (1984) Giardia lamblia. Autoradiographic analysis of nuclear division. Exp Parasitol 58:94–100

    Article  CAS  PubMed  Google Scholar 

  • Woessner DJ, Dawson SC (2012) The Giardia median body protein is a ventral disc protein that is critical for maintaining a domed disc conformation during attachment. Eukaryot Cell 11:292–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeagle PL (1993) The Membrane of Cells, 2nd edn. Academic, San Diego

    Google Scholar 

  • Yichoy M, Nakayasu ES, Shpak M, Aguilar C, Aley SB, Almeida IC, Das S (2009) Lipidomic analysis reveals that phosphatidylglycerol and phosphatidylethanolamine are newly generated phospholipids in an early-divergent protozoan, Giardia lamblia. Mol Biochem Parasitol 165:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yichoy M, Duarte TT, De Chatterjee A, Mendez TL, Aguilera KY, Roy D, Roychowdhury S, Aley SB, Das S (2011) Lipid metabolism in Giardia: a post-genomic perspective. Parasitology 138:267–278

    Article  CAS  PubMed  Google Scholar 

  • Yu LZ, Birky CW Jr, Adam RD (2002) The two nuclei of Giardia each have complete copies of the genome and are partitioned equationally at cytokinesis. Eukaryot Cell 1:191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan H, Li X, Zhang X, Kang R, Tang D (2016) Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun 478:1338–1343

    Article  CAS  PubMed  Google Scholar 

  • Zamponi N, Feliziani C, Touz MC (2016) Endocytosis in Giardia: evidence of Absence. Trends Parasitol 32:838–840

    Article  PubMed  Google Scholar 

  • Zumthor JP, Cernikova L, Rout S, Kaech A, Faso C, Hehl AB (2016) Static clathrin assemblies at the peripheral vacuole-plasma membrane interface of the parasitic protozoan Giardia lamblia. PLoS Pathog 12:e1005756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The work in the authors laboratories have been supported by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq, Financiadora de Estudos e Projetos-Finep, and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benchimol, M., Gadelha, A.P.R., de Souza, W. (2022). Cell Biology of the Life Cycle of Giardia intestinalis. In: de Souza, W. (eds) Lifecycles of Pathogenic Protists in Humans. Microbiology Monographs, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-80682-8_11

Download citation

Publish with us

Policies and ethics