Skip to main content

Using Genomic Data to Guide Walleye Management in the Great Lakes

  • Chapter
  • First Online:
Yellow Perch, Walleye, and Sauger: Aspects of Ecology, Management, and Culture

Abstract

Genetic and genomic resources are being developed at a rapid pace, offering powerful tools that can help protect and sustain ecologically important fish populations and the valued fisheries that they support. Herein, we discuss recent and ongoing genetic/genomic research in the Great Lakes and how high-throughput sequencing data has informed Walleye (Stizostedion vitreum) biology and management. During 2017–2018, RAD-sequencing refined descriptions of population genetic structure in Lake Erie, showing that genomic data can improve assignment accuracy for mixed-stock analysis. During 2018–2019, research demonstrated the function of Rapture panels to determine the natal origins of Walleye captured in eastern Lake Erie’s recreational and commercial mixed-stock fisheries, indicating that both local (eastern basin) and distant (western basin) local spawning populations contribute to these fisheries. In 2019, researchers began to evaluate the hierarchical population structure of Walleye from 31 Great Lakes spawning sites and use a 99,636-bait Rapture panel to identify potential signals of local adaptation within these populations. In addition to highlighting these advances, we discuss how the continued development of these and other molecular tools (e.g., GT-seq panels that can help to reduce the cost and processing time for repeated genetic studies) could allow for 1000s of individuals to be cost-effectively genotyped annually. Such ability would continue to pave the way for researchers and management agencies to identify population structure, estimate relative stock contributions to mixed-stock fisheries, evaluate parentage, inform hatchery practices, or conduct other molecular analyses in support of other management or conservation needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackiss AS, Larson WA, Stott W (2020) Genotyping-by-sequencing illuminates high levels of divergence among sympatric forms of coregonines in the Laurentian Great Lakes. Evol Appl 13(5):1037–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali OA, O’Rourke SM, Amish SJ, Meek MH, Luikart G, Jeffres C, Miller MR (2016) Rad capture (Rapture): flexible and efficient sequence-based genotyping. Genetics 202(2):389–400

    Article  CAS  PubMed  Google Scholar 

  • Allan JD, McIntyre PB, Smith SD, Halpern BS, Boyer GL, Buchsbaum A, Burton GA Jr, Campbell LM, Chadderton WL, Ciborowski JJH, Doran PJ, Eder T, Infante DM, Johnson LB, Joseph CA, Marino AL, Prusevich A, Read JG, Rose JB, Rutherford ES, Sowa SP, Steinman AD (2013) Joint analysis of stressors and ecosystem services to enhance restoration effectiveness. Proc Natl Acad Sci U S A 110(1):372–377

    Article  CAS  PubMed  Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11(10):697–709

    Article  CAS  PubMed  Google Scholar 

  • Andvik RT, Sloss BL, VanDeHey JA, Claramunt RM, Hansen SP, Isermann DA (2016) Mixed stock analysis of Lake Michigan’s lake whitefish Coregonus clupeaformis commercial fishery. J Great Lakes Res 42(3):660–667

    Article  Google Scholar 

  • Baetscher DS, Clemento AJ, Ng TC, Anderson EC, Garza JC (2018) Microhaplotypes provide increased power from short-read DNA sequences for relationship inference. Mol Ecol Resour 18(2):296–305

    Article  CAS  PubMed  Google Scholar 

  • Baetscher DS, Anderson EC, Gilbert-Horvath EA, Malone DP, Saarman ET, Carr MH, Garza JC (2019) Dispersal of a nearshore marine fish connects marine reserves and adjacent fished areas along an open coast. Mol Ecol 28(7):1611–1623

    Article  PubMed  Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3(10):e3376

    Article  PubMed  PubMed Central  Google Scholar 

  • Beacham TD, Jonsen K, McIntosh B, Sutherland BJG, Willis D, Lynch C, Wallace C (2020) Large-scale parentage-based tagging and genetic stock identification applied in assessing mixed-stock fisheries and hatchery brood stocks for coho salmon in British Columbia, Canada. Can J Fish Aquat Sci 77(9):1505–1517

    Article  Google Scholar 

  • Bernatchez L (2016) On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes. J Fish Biol 89(6):2519–2556

    Article  CAS  PubMed  Google Scholar 

  • Bernatchez L, Wellenreuther M, Araneda C, Ashton DT, Barth JMI, Beacham TD, Maes GE, Martinsohn JT, Miller KM, Naish KA, Ovenden JR, Primmer CR, Young Suk H, Therkildsen NO, Withler RE (2017) Harnessing the power of genomics to secure the future of seafood. Trends Ecol Evol 32(9):665–680

    Article  PubMed  Google Scholar 

  • Billington N, Wilson C, Sloss B (2011) Distribution and population genetics of walleye and sauger. In: Barton B (ed) Biology, management, and culture of Walleye and Sauger. American Fisheries Society, pp 105–132

    Google Scholar 

  • Bootsma ML, Gruenthal KM, McKinney GJ, Simmons L, Miller L, Sass GG, Larson WA (2020) A GT-seq panel for walleye (Sander vitreus) provides important insights for efficient development and implementation of amplicon panels in non-model organisms. Mol Ecol Resour 20(6):1706–1722

    Article  CAS  PubMed  Google Scholar 

  • Brenden TO, Scribner KT, Bence JR, Tsehaye I, Kanefsky J, Vandergoot CS, Fielder DG (2015) Contributions of Lake Erie and Lake St. Clair walleye populations to the Saginaw Bay, Lake Huron, recreational fishery: Evidence from genetic stock identification. N Am J Fish Manag 35(3):567–577

    Article  Google Scholar 

  • Bunnell DB, Barbiero RP, Ludsin SA, Madenjian CP, Warren GJ, Dolan DM, Brenden TO, Briland R, Gorman OT, He JX, Johengen TH, Lantry BF, Lesht BM, Nalepa TF, Riley SC, Riseng CM, Treska TJ, Tsehaye I, Maureen G, Walsh MG, Warner DM, Weidel BC (2014) Changing ecosystem dynamics in the Laurentian Great Lakes: bottom-up and top-down regulation. Bioscience 64(1):26–39

    Article  Google Scholar 

  • Campbell NR, Harmon SA, Narum SR (2015) Genotyping-in-Thousands by sequencing (GT-seq): a cost effective SNP genotyping method based on custom amplicon sequencing. Mol Ecol Resour 15(4):855–867

    Article  CAS  PubMed  Google Scholar 

  • Caroffino DC, Mwai AM, Evans BI (2011) Population genetics of walleye and yellow perch in the St. Marys River. Journal of Great Lakes Research 37(Suppl. 2):28–34

    Article  Google Scholar 

  • Chen K-Y, Ludsin SA, Corey MM, Collingsworth PD, Nims MK, Olesik JW, Dabrowski K, Van Tassell JJ, Marschall EA (2017) Experimental and field evaluation of otolith Strontium as a marker to discriminate between river-spawning populations of walleye in Lake Erie. Can J Fish Aquat Sci 74(5):693–701

    Article  CAS  Google Scholar 

  • Chen K-Y, Marschall EA, Sovic MG, Fries AC, Gibbs HL, Ludsin SA (2018) assignPOP: an r package for population assignment using genetic, non-genetic, or integrated data in a machine-learning framework. Methods Ecol Evol 9(2):439–446

    Article  Google Scholar 

  • Chen K-Y, Euclide PT, Ludsin SA, Larson WA, Sovic MG, Gibbs HL, Marschall EA (2020a) RAD-seq refines previous estimates of genetic structure in Lake Erie walleye. Trans Am Fish Soc 149(2):159–173

    Article  CAS  Google Scholar 

  • Chen K-Y, Ludsin SA, Marcek BJ, Olesik JW, Marschall EA (2020b) Otolith microchemistry shows natal philopatry of walleye in western Lake Erie. J Great Lakes Res 46(5):1349–1357

    Article  CAS  Google Scholar 

  • Dahle G, Johansen T, Westgaard JI, Aglen A, Glover KA (2018) Genetic management of mixed-stock fisheries “real-time”: the case of the largest remaining cod fishery operating in the Atlantic in 2007–2017. Fish Res 205:77–85

    Article  Google Scholar 

  • Davey JW, Blaxter ML (2010) RADSeq: next-generation population genetics. Brief Funct Genomics 9(5–6):416–423

    Article  CAS  PubMed  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12(7):499–510

    Article  CAS  PubMed  Google Scholar 

  • Dembkowski DJ, Isermann DA, Hogler SR, Larson WA, Turnquist KN (2018) Stock structure, dynamics, demographics, and movements of walleyes spawning in four tributaries to Green Bay. J Great Lakes Res 44(5):970–978

    Article  Google Scholar 

  • Dippold DA, Aloysius NR, Keitzer SC, Yen H, Arnold JG, Daggupati P, Fraker ME, Martin JF, Robertson DM, Sowa SP, Johnson M-VV, White MJ, Ludsin SA (2020) Forecasting the combined effects of anticipated climate change and agricultural conservation practices on fish recruitment dynamics in Lake Erie. Freshw Biol 65(9):1487–1508

    Article  Google Scholar 

  • DuFour MR, May CJ, Roseman EF, Ludsin SA, Vandergoot CS, Pritt JJ, Fraker ME, Davis JJ, Tyson JT, Miner JG, Marschall EA, Mayer CM (2015) Portfolio theory as a management tool to guide conservation and restoration of multi-stock fish populations. Ecosphere 6(12):art296

    Article  Google Scholar 

  • Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Elias A, McLaughlin R, Mackereth R, Wilson C, Nichols KM (2018) Population structure and genomic variation of ecological life history diversity in wild-caught Lake Superior brook trout, Salvelinus fontinalis. J Great Lakes Res 44(6):1373–1382

    Article  Google Scholar 

  • Euclide PT, MacDougall T, Robinson JM, Faust MD, Wilson CC, Chen K-Y, Marschall EA, Larson WA, Ludsin SA (2021) Mixed-stock analysis using Rapture genotyping to evaluate stock-specific exploitation of a walleye population despite weak genetic structure. Evol Appl 14(5):1403–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faust MD, Vandergoot CS, Brenden TO, Kraus RT, Hartman T, Krueger CC (2019) Acoustic telemetry as a potential tool for mixed-stock analysis of fishery harvest: a feasibility study using Lake Erie walleye. Can J Fish Aquat Sci 76(6):1019–1030

    Article  Google Scholar 

  • Feron R, Zahm M, Cabau C, Klopp C, Roques C, Bouchez O, Eché C, Valière S, Donnadieu C, Haffray P, Bestin A, Morvezen R, Acloque H, Euclide PT, Wen M, Jouano E, Schartl M, Postlethwait JH, Schraidt C, Christie MR, Larson WA, Herpin A, Guiguen Y (2020) Characterization of a Y-specific duplication/insertion of the anti-Mullerian hormone type II receptor gene based on a chromosome-scale genome assembly of yellow perch, Perca flavescens. Mol Ecol Resour 20(2):531–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flanagan SP, Forester BR, Latch EK, Aitken SN, Hoban S (2018) Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol Appl 11(7):1035–1052

    Article  PubMed  Google Scholar 

  • Fraker ME, Anderson EJ, May CJ, Chen K-Y, Davis JJ, DeVanna KM, DuFour MR, Marschall EA, Mayer CM, Miner JG, Pangle KL, Pritt JJ, Roseman EF, Tyson JT, Zhao Y, Ludsin SA (2015) Stock-specific advection of larval walleye (Sander vitreus) in western Lake Erie: implications for larval growth, mixing, and stock discrimination. J Great Lakes Res 41(3):830–845

    Article  Google Scholar 

  • Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27(9):489–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Garner SR, Bobrowicz SM, Wilson CC (2013) Genetic and ecological assessment of population rehabilitation: walleye in Lake Superior. Ecol Appl 23(3):594–605

    Article  PubMed  Google Scholar 

  • Gatt MH, Ferguson MM, Liskauskas AP (2000) Comparison of control region sequencing and fragment RFLP analysis for resolving mitochondrial DNA variation and phylogenetic relationships among Great Lakes walleyes. Trans Am Fish Soc 129(6):1288–1299

    Article  CAS  Google Scholar 

  • Gatt MH, McParland TL, Halyk LC, Ferguson MM (2003) Mitochondrial DNA variation and mixed-stock analysis of recreational and commercial walleye fisheries in Eastern Lake Erie. N Am J Fish Manag 23(2):431–440

    Article  Google Scholar 

  • Graham CF, Boreham DR, Manzon RG, Stott W, Wilson JY, Somers CM (2020) How “simple” methodological decisions affect interpretation of population structure based on reduced representation library DNA sequencing: a case study using the lake whitefish. PLoS One 15(1):e0226608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haponski AE, Dean H, Blake BE, Stepien CA (2014) Genetic history of walleyes spawning in Lake Erie’s Cattaraugus Creek: a comparison of pre- and poststocking. Trans Am Fish Soc 143(5):1295–1307

    Article  Google Scholar 

  • Harrisson KA, Amish SJ, Pavlova A, Narum SR, Telonis-Scott M, Rourke ML, Lyon J, Tonkin Z, Gilligan DM, Ingram BA, Lintermans M, Gan HM, Austin CM, Luikart G, Sunnucks P (2017) Signatures of polygenic adaptation associated with climate across the range of a threatened fish species with high genetic connectivity. Mol Ecol 26(22):6253–6269

    Article  PubMed  Google Scholar 

  • Harvey MG, Smith BT, Glenn TC, Faircloth BC, Brumfield RT (2016) Sequence capture versus restriction site associated DNA sequencing for shallow systematics. Syst Biol 65(5):910–924

    Article  CAS  PubMed  Google Scholar 

  • Hayden TA, Binder TR, Holbrook CM, Vandergoot CS, Fielder DG, Cooke SJ, Dettmers JM, Krueger CC (2018) Spawning site fidelity and apparent annual survival of walleye (Sander vitreus) differ between a Lake Huron and Lake Erie tributary. Ecol Freshw Fish 27(1):339–349

    Article  Google Scholar 

  • Helyar SJ, Hemmer-Hansen J, Bekkevold D, Taylor MI, Ogden R, Limborg MT, Cariani A, Maes GE, Diopere E, Carvalho GR, Nielsen EE (2011) Application of SNPs for population genetics of nonmodel organisms: New opportunities and challenges. Mol Ecol Resour 11(Suppl. 1):123–136

    Article  PubMed  Google Scholar 

  • Hess JE, Campbell NR, Docker MF, Baker C, Jackson A, Lampman R, McIlraith B, Moser ML, Statler DP, Young WP, Wildbill AJ, Narum SR (2015) Use of genotyping by sequencing data to develop a high-throughput and multifunctional SNP panel for conservation applications in Pacific lamprey. Mol Ecol Resour 15(1):187–202

    Article  CAS  PubMed  Google Scholar 

  • Hohenlohe PA, Amish SJ, Catchen JM, Allendorf FW, Luikart G (2011) Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Mol Ecol Resour 11(Suppl. 1):117–122

    Article  PubMed  Google Scholar 

  • Holderegger R, Kamm U, Gugerli F (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc Ecol 21(6):797–807

    Article  Google Scholar 

  • Jeffries DL, Copp GH, Handley LL, Håkan Olsén K, Sayer CD, Hänfling B (2016) Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius, L. Mol Ecol 25(13):2997–3018

    Article  PubMed  Google Scholar 

  • Johnson TB, Dixon B, Stepien CA, Wilson CC (2004) Stock discrimination of Lake Erie walleye: a mixed stock analysis contrasting genetic techniques. Great Lake Fishery Commission Final Report. Great Lakes Fishery Commission, Ann Arbor, MI. Available from http://www.glfc.org/lakecom/lec/WTG_docs/annual_reports/WTG_report_2006.pdf

    Google Scholar 

  • Johnson RN, O’Meally D, Chen Z, Etherington GJ, Ho SYW, Nash WJ, Grueber CE, Cheng Y, Whittington CM, Dennison S, Peel E, Haerty W, O’Neill RJ, Colgan D, Russell TL, Alquezar-Planas DE, Attenbrow V, Bragg JG, Brandies PA, Chong AYY, Deakin JE, Di Palma F, Duda Z, Eldridge MDB, Ewart KM, Hogg CJ, Frankham GJ, Georges A, Gillett AK, Govendir M, Greenwood AD, Hayakawa T, Helgen KM, Hobbs M, Holleley CE, Heider TN, Jones EA, King A, Madden D, Marshall Graves JA, Morris KM, Neaves LE, Patel HR, Polkinghorne A, Renfree MB, Robin C, Salinas R, Tsangaras K, Waters PD, Waters SA, Wright B, Wilkins MR, Timms P, Belov K (2018) Adaptation and conservation insights from the koala genome. Nat Genet 50(8):1102–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayle K, Francis J, Murray C, Markham J (2015) Lake Erie Walleye management plan (2015–2019), Ann Arbor, MI

    Google Scholar 

  • Kumar G, Kocour M (2017) Applications of next-generation sequencing in fisheries research: a review. Fish Res 186:11–22

    Article  Google Scholar 

  • Lachance J, Tishkoff SA (2013) SNP ascertainment bias in population genetic analyses: why it is important, and how to correct it. BioEssays 35(9):780–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson WA, Seeb LW, Everett MV, Waples RK, Templin WD, Seeb JE (2014) Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha). Evol Appl 7(3):355–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh DM, Lischer HEL, Grossen C, Keller LF (2018) Batch effects in a multiyear sequencing study: false biological trends due to changes in read lengths. Mol Ecol Resour 18(4):778–788

    Article  CAS  PubMed  Google Scholar 

  • Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF, Storfer A (2017) Responsible RAD: striving for best practices in population genomic studies of adaptation. Mol Ecol Resour 17(3):366–369

    Article  PubMed  Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4(12):981–994

    Article  CAS  PubMed  Google Scholar 

  • MacDougall TM, Wilson CC, Richardson LM, Lavender M, Ryan PA (2007) Walleye in the Grand River, Ontario: an overview of rehabilitation efforts, their effectiveness, and implications for eastern Lake Erie fisheries. J Great Lakes Res 33(1):103–117

    Article  Google Scholar 

  • Matley JK, Faust MD, Raby GD, Zhao Y, Robinson J, MacDougall TM, Hayden TA, Fisk AT, Vandergoot CS, Krueger CC (2020) Seasonal habitat-use differences among Lake Erie’s walleye stocks. J Great Lakes Res 46(3):609–621

    Article  Google Scholar 

  • McKinney GJ, Seeb JE, Seeb LW (2017) Managing mixed-stock fisheries: genotyping multi-SNP haplotypes increases power for genetic stock identification. Can J Fish Aquat Sci 74(4):429–434

    Article  CAS  Google Scholar 

  • McKinney GJ, Pascal CE, Templin WD, Gilk-Baumer SE, Dann TH, Seeb LW, Seeb JE (2020) Dense SNP panels resolve closely related chinook salmon populations. Can J Fish Aquat Sci 77(3):451–461

    Article  CAS  Google Scholar 

  • McParland TL, Ferguson MM, Liskauskas AP (1999) Genetic population structure and mixed-stock analysis of walleyes in the Lake Erie–Lake Huron corridor using allozyme and mitochondrial DNA markers. Trans Am Fish Soc 128(6):1055–1067

    Article  CAS  Google Scholar 

  • Meek MH, Larson WA (2019) The future is now: Amplicon sequencing and sequence capture usher in the conservation genomics era. Mol Ecol Resour 19(4):795–803

    Article  PubMed  Google Scholar 

  • Merker RJJ, Woodruff RCC (1996) Molecular evidence for divergent breeding groups of walleye (Stizostedion vitreum) in tributaries to western Lake Erie. J Great Lakes Res 22(2):280–288

    Article  Google Scholar 

  • Micheletti SJ, Hess JE, Zendt JS, Narum SR (2018) Selection at a genomic region of major effect is responsible for evolution of complex life histories in anadromous steelhead. BMC Evol Biol 18(1):140

    Article  PubMed  PubMed Central  Google Scholar 

  • Mion JB, Stein RA, Marschall EA (2009) River discharge drives survival of larval walleye. Ecol Appl 8(1):88–103

    Article  Google Scholar 

  • Morissette O, Sirois P, Wilson CC, Laporte M, Bernatchez L (2019) The role of ecotype-environment interactions in intraspecific trophic niche partitioning subsequent to stocking. Ecol Appl 29(3):e01857

    Article  CAS  PubMed  Google Scholar 

  • Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA (2013) Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol 22(11):2841–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson DE, Scidmore WJ (1962) Homing behavior of spawning walleyes. Trans Am Fish Soc 91(4):355–361

    Article  Google Scholar 

  • Ozerov MY, Gross R, Bruneaux M, Vähä J-P, Burimski O, Pukk L, Vasemägi A (2016) Genome wide introgressive hybridization patterns in wild Atlantic salmon influenced by inadvertent gene flow from hatchery releases. Mol Ecol 25(6):1275–1293

    Article  CAS  PubMed  Google Scholar 

  • Pearse DE, Miller MR, Abadía-Cardoso A, Garza JC (2014) Rapid parallel evolution of standing variation in a single, complex, genomic region is associated with life history in steelhead/rainbow trout. Proc R Soc B Biol Sci 281(1783):20140012

    Article  Google Scholar 

  • Raby GD, Vandergoot CS, Hayden TA, Faust MD, Kraus RT, Dettmers JM, Cooke SJ, Zhao Y, Fisk AT, Krueger CC (2018) Does behavioural thermoregulation underlie seasonal movements in Lake Erie walleye? Can J Fish Aquat Sci 75(3):1–9

    Article  Google Scholar 

  • Reid BN, Moran RL, Kopack CJ, Fitzpatrick SW (2021) Rapture-ready darters: choice of reference genome and genotyping method (whole-genome or sequence capture) influence population genomic inference in Etheostoma. Mol Ecol Resour 21(2):404–420

    Article  CAS  PubMed  Google Scholar 

  • Robison HW, Buchanan TM (2020) Fishes of Arkansas, 2nd edn. The University of Arkansas Press, Fayetteville, AR, 959 p

    Google Scholar 

  • Sard NM, Robinson J, Kanefsky J, Herbst S, Scribner K (2019) Coalescent models characterize sources and demographic history of recent round goby colonization of Great Lakes and inland waters. Evol Appl 12(5):1034–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sard NM, Smith SR, Homola JJ, Kanefsky J, Bravener G, Adams JV, Holbrook CM, Hrodey PJ, Tallon K, Scribner KT (2020) RAPTURE (RAD capture) panel facilitates analyses characterizing sea lamprey reproductive ecology and movement dynamics. Ecol Evol 10(3):1469–1488

    Article  PubMed  PubMed Central  Google Scholar 

  • Schindler DE, Hilborn R, Chasco B, Boatright CP, Quinn TP, Rogers LA, Webster MS (2010) Population diversity and the portfolio effect in an exploited species. Nature 465(7298):609–612

    Article  CAS  PubMed  Google Scholar 

  • Scribner K, Tsehaye I, Brenden T, Stott W, Kanefsky J, Bence J (2018) Hatchery strain contributions to emerging wild lake trout populations in Lake Huron. J Hered 109(6):675–688

    Article  PubMed  Google Scholar 

  • Seeb JE, Carvalho G, Hauser L, Naish K, Roberts S, Seeb LW (2011) Single-nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms. Mol Ecol Resour 11(Suppl. 1):1–8

    Article  PubMed  Google Scholar 

  • Smith SR, Amish SJ, Bernatchez L, Le Luyer J, Wilson C, Boeberitz O, Luikart G, Scribner KT (2020) Mapping of adaptive traits enabled by a high-density linkage map for lake trout. G3 (Bethesda) 10(6):1929–1947

    CAS  Google Scholar 

  • Steele CA, Hess M, Narum S, Campbell M (2019) Parentage-based tagging: reviewing the implementation of a new tool for an old problem. Fisheries 44(9):412–422

    Article  Google Scholar 

  • Stepien CA, Faber JE (1998) Population genetic structure, phylogeography and spawning philopatry in walleye (Stizostedion vitreum) from mitochondrial DNA control region sequences. Mol Ecol 7(12):1757–1769

    Article  CAS  PubMed  Google Scholar 

  • Stepien CA, Murphy DJ, Lohner RN, Sepulveda-Villet OJ, Haponski AE (2009) Signatures of vicariance, postglacial dispersal and spawning philopatry: population genetics of the walleye Sander vitreus. Mol Ecol 18(16):3411–3428

    Article  CAS  PubMed  Google Scholar 

  • Stepien CA, Banda JA, Murphy DM, Haponski AE (2012) Temporal and spatial genetic consistency of walleye spawning groups. Trans Am Fish Soc 141(3):660–672

    Article  Google Scholar 

  • Stepien CA, Sepulveda-Villet OJ, Haponski AE (2015) Comparative genetic diversity, population structure, and adaptations of Walleye and Yellow Perch across North America. In: Kestemont P, Dabrowski K, Summerfelt RC (eds) Biology and culture of percid fishes: principles and practices. Springer, Dordrecht, pp 643–689, 901 p

    Google Scholar 

  • Stepien CA, Snyder MR, Knight CT (2018) Genetic divergence of nearby walleye spawning groups in central Lake Erie: implications for management. N Am J Fish Manag 38(4):783–793

    Article  Google Scholar 

  • Stott W, VanDeHey JA, Justin JA (2010) Genetic diversity of lake whitefish in lakes Michigan and Huron; sampling, standardization, and research priorities. J Great Lakes Res 36(Suppl. 1):59–65

    Article  Google Scholar 

  • Strange RM, Stepien CA (2007) Genetic divergence and connectivity among river and reef spawning groups of walleye (Sander vitreus vitreus) in Lake Erie. Can J Fish Aquat Sci 64(3):437–448

    Article  Google Scholar 

  • Thorstensen MJ, Jeffrey JD, Treberg JR, Watkinson DA, Enders EC, Jeffries KM (2020) Genomic signals found using RNA sequencing show signatures of selection and subtle population differentiation in walleye (Sander vitreus) in a large freshwater ecosystem. Ecol Evol 10(14):7173–7188

    Article  PubMed  PubMed Central  Google Scholar 

  • Todd TN, Haas RC (1993) Genetic and tagging evidence for movement of walleyes between Lake Erie and Lake St. Clair. J Great Lakes Res 19(2):445–452

    Article  Google Scholar 

  • Valenzuela-Quiñonez F (2016) How fisheries management can benefit from genomics? Brief Funct Genomics 15(5):352–357

    Article  PubMed  Google Scholar 

  • Vandergoot CS, Cook HA, Thomas MV, Einhouse DW, Murray C (2010) Status of walleye in western Lake Erie, 1985-2006. In: Status of walleye in the Great Lakes: proceedings of the 2006 Symposium. Great Lakes Fishery Commission Technical Report 69, pp 123–150

    Google Scholar 

  • Walleye Task Group (2018) Report of the Lake Erie Walleye Task Group to the Standing Technical Committee. Great Lakes Fishery Commission, Ann Arbor, MI

    Google Scholar 

  • Wang H-Y, Rutherford ES, Cook HA, Einhouse DW, Haas RC, Johnson TB, Kenyon R, Locke B, Turner MW (2007) Movement of walleyes in Lakes Erie and St. Clair inferred from tag return and fisheries data. Trans Am Fish Soc 136(2):539–551

    Article  Google Scholar 

  • Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15(6):1419–1439

    Article  CAS  PubMed  Google Scholar 

  • Waples RS, Naish KA, Primmer CR (2020) Conservation and management of salmon in the age of genomics. Annu Rev Anim Biosci 8(1):117–143

    Article  PubMed  Google Scholar 

  • Whitaker JM, Price LE, Boase JC, Bernatchez L, Welsh AB (2020) Detecting fine-scale population structure in the age of genomics: a case study of lake sturgeon in the Great Lakes. Fish Res 230:105646

    Article  Google Scholar 

  • Wilson CC, Lavender M, Black J (2007) Genetic assessment of walleye (Sander vitreus) restoration efforts and options in Nipigon Bay and black Bay, Lake Superior. J Great Lakes Res 33(1):133–144

    Article  Google Scholar 

  • Wilson CC, Stott W, Miller L, D’Amelio S, Jennings MJ, Cooper AM (2008) Conservation genetics of Lake Superior brook trout: issues, questions, and directions. N Am J Fish Manag 28(4):1307–1320

    Article  Google Scholar 

  • Wolfert DR, Van Meter HD (1978) Movements of walleyes tagged in eastern Lake Erie. N Y Fish Game J 25(6):16–22

    Google Scholar 

  • Zhao Y, Einhouse DW, MacDougall TM (2011) Resolving some of the complexity of a mixed-origin walleye population in the east basin of Lake Erie using a mark–recapture study. N Am J Fish Manag 31(2):379–389

    Article  Google Scholar 

  • Zhao Y, Kocovsky PM, Madenjian CP (2013) Development of a stock-recruitment model and assessment of biological reference points for the Lake Erie walleye fishery. N Am J Fish Manag 33(5):956–964

    Article  Google Scholar 

  • Zhao H, Silliman K, Lewis M, Johnson S, Kratina G, Rider SJ, Stepien CA, Hallerman EM, Beck B, Fuller A, Peatman E (2020) SNP analyses highlight a unique, imperiled southern walleye (Sander vitreus) in the Mobile River Basin. Can J Fish Aquat Sci 77(8):1366–1378

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Euclide, P.T. et al. (2021). Using Genomic Data to Guide Walleye Management in the Great Lakes. In: Bruner, J.C., DeBruyne, R.L. (eds) Yellow Perch, Walleye, and Sauger: Aspects of Ecology, Management, and Culture . Fish & Fisheries Series, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-80678-1_5

Download citation

Publish with us

Policies and ethics