Skip to main content

Curvature

  • Chapter
  • First Online:
Comparison Finsler Geometry

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 884 Accesses

Abstract

This chapter is devoted to the derivation of a natural notion of curvature via a Jacobi field, which is the variational vector field of a geodesic variation. This argument goes back to Ludwig Berwald’s important posthumous paper.

The appearance of a geodesic variation reminds us of a characterization of covariant derivatives by using the Riemannian metric g V associated with a vector field V  whose integral curves are geodesics. In fact, this viewpoint leads us to a useful and inspiring description of the Finsler curvature as the Riemannian curvature of g V. The metric g V is also called an osculating Riemannian metric, and its application to the Riemannian characterization of the Finsler curvature goes back to Ottó Varga.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auslander, L.: On curvature in Finsler geometry. Trans. Am. Math. Soc. 79, 378–388 (1955)

    Article  MathSciNet  Google Scholar 

  2. Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann–Finsler Geometry. Springer, New York (2000)

    Book  Google Scholar 

  3. Berwald, L.: Ueber Finslersche und Cartansche Geometrie. IV. Projektivkrümmung allgemeiner affiner Räume und Finslersche Räume skalarer Krümmung. (German) Ann. Math. (2) 48, 755–781 (1947)

    Google Scholar 

  4. Chavel, I.: Riemannian Geometry. A Modern Introduction, 2nd edn. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  5. Rund, H.: The Differential Geometry of Finsler Spaces. Springer, Berlin, Göttingen, Heidelberg (1959)

    Book  Google Scholar 

  6. Shen, Z.: Lectures on Finsler Geometry. World Scientific Publishing Co., Singapore (2001)

    Book  Google Scholar 

  7. Varga, O.: Zur Herleitung des invarianten Differentials in Finslerschen Räumen. (German) Monatsh. Math. Phys. 50, 165–175 (1941)

    Google Scholar 

  8. Varga, O.: Über das Krümmungsmass in Finslerschen Räumen. (German) Publ. Math. Debrecen 1, 116–122 (1949)

    MATH  Google Scholar 

  9. Wu, B.Y., Xin, Y.L.: Comparison theorems in Finsler geometry and their applications. Math. Ann. 337, 177–196 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ohta, Si. (2021). Curvature. In: Comparison Finsler Geometry. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-80650-7_5

Download citation

Publish with us

Policies and ethics