Skip to main content

Functional Inequalities

  • Chapter
  • First Online:
Comparison Finsler Geometry

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 893 Accesses

Abstract

In this last chapter of Part II, we make full use of the Γ-calculus technique to establish important functional inequalities. We have already shown the Poincaré–Lichnerowicz inequality in the previous chapter. In this chapter we further obtain the logarithmic Sobolev inequality, the Beckner inequality, and the Sobolev inequality. We will closely follow the arguments in the linear (Riemannian) case and generalize them to our nonlinear (Finsler) setting. All the estimates will be of the same forms as the linear case, except for the range of the exponent p adopted in the Sobolev inequality in the non-reversible case. We remark that, in contrast with the gradient estimates in Chaps. 14 and 15, linearized heat semigroups will play only a subsidiary role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Springer, Cham (2014)

    Book  Google Scholar 

  2. Bakry, D., Gentil, I., Scheffer, G.: Sharp Beckner-type inequalities for Cauchy and spherical distributions. Studia Math. 251, 219–245 (2020)

    Article  MathSciNet  Google Scholar 

  3. Cavalletti, F., Mondino, A.: Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds. Geom. Topol. 21, 603–645 (2017)

    Article  MathSciNet  Google Scholar 

  4. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications. Part I. Geometric Aspects. American Mathematical Society, Providence, RI (2007)

    Google Scholar 

  5. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci Flow. American Mathematical Society, Providence, RI; Science Press Beijing, New York (2006)

    Google Scholar 

  6. Duoandikoetxea, J.: Fourier Analysis. American Mathematical Society, Providence, RI (2001)

    MATH  Google Scholar 

  7. Gentil, I., Zugmeyer, S.: A family of Beckner inequalities under various curvature-dimension conditions. Bernoulli 27, 751–771 (2021)

    Article  MathSciNet  Google Scholar 

  8. Hebey, E.: Sobolev Spaces on Riemannian Manifolds. Lecture Notes in Mathematics, vol. 1635. Springer, Berlin (1996)

    Google Scholar 

  9. Hebey, E.: Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (1999)

    Google Scholar 

  10. Ledoux, M.: The Concentration of Measure Phenomenon. American Mathematical Society, Providence, RI (2001)

    MATH  Google Scholar 

  11. Mai, C.H.: On Riemannian manifolds with positive weighted Ricci curvature of negative effective dimension. Kyushu J. Math. 73, 205–218 (2019)

    Article  MathSciNet  Google Scholar 

  12. Milman, E.: Beyond traditional curvature-dimension I: new model spaces for isoperimetric and concentration inequalities in negative dimension. Trans. Am. Math. Soc. 369, 3605–3637 (2017)

    Article  MathSciNet  Google Scholar 

  13. Nguyen, V.H.: Φ-entropy inequalities and asymmetric covariance estimates for convex measures. Bernoulli 25, 3090–3108 (2019)

    Article  MathSciNet  Google Scholar 

  14. Ohta, S.: Some functional inequalities on non-reversible Finsler manifolds. Proc. Indian Acad. Sci. Math. Sci. 127, 833–855 (2017)

    Article  MathSciNet  Google Scholar 

  15. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. Preprint (2002). Available at arXiv:math/0211159

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ohta, Si. (2021). Functional Inequalities. In: Comparison Finsler Geometry. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-80650-7_16

Download citation

Publish with us

Policies and ethics