Skip to main content

Nonlinear Heat Flow

  • Chapter
  • First Online:
Comparison Finsler Geometry

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 894 Accesses

Abstract

In this chapter, we discuss fundamental properties of the nonlinear heat equation t u =  Δ u associated with the nonlinear Laplacian Δ defined in Chap. 11. In particular, we establish the existence and the regularity of global solutions to the heat equation. Coupled with the Bochner inequalities in the previous chapter, the analysis of heat flow leads to various analytic and geometric applications as we will see in the following chapters. We remark that, due to the nonlinearity, there is no heat kernel.

Although it is nonlinear, our Laplacian is locally uniformly elliptic by virtue of the smoothness and the strong convexity of Finsler structures. Therefore one can analyze the heat equation by using well-established techniques in partial differential equations. We remark that analytic arguments in the proof of the regularity will be only sketched since they are beyond the scope of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser Verlag, Basel (2005)

    MATH  Google Scholar 

  2. Bačák, M.: Convex Analysis and Optimization in Hadamard Spaces. Walter de Gruyter & Co., Berlin (2014)

    Book  Google Scholar 

  3. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Springer, Cham (2014)

    Book  Google Scholar 

  4. Belloni, M., Kawohl, B., Juutinen, P.: The p-Laplace eigenvalue problem as p → in a Finsler metric. J. Eur. Math. Soc. 8, 123–138 (2006)

    Article  MathSciNet  Google Scholar 

  5. Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (French). North-Holland Publishing Co., Amsterdam, London; American Elsevier Publishing Co., Inc., New York (1973)

    Google Scholar 

  6. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications. Part I. Geometric Aspects. American Mathematical Society, Providence, RI (2007)

    Google Scholar 

  7. Crandall, M.G., Liggett, T.M.: Generation of semi-groups of nonlinear transformations on general Banach spaces. Am. J. Math. 93, 265–298 (1971)

    Article  MathSciNet  Google Scholar 

  8. DiBenedetto, E.: \(\mathcal {C}^{1+\alpha }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7, 827–850 (1983)

    Google Scholar 

  9. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence, RI (1998)

    MATH  Google Scholar 

  10. Ge, Y., Shen, Z.: Eigenvalues and eigenfunctions of metric measure manifolds. Proc. Lond. Math. Soc. (3) 82, 725–746 (2001)

    Google Scholar 

  11. Hebey, E.: Sobolev Spaces on Riemannian Manifolds. Lecture Notes in Mathematics, vol. 1635. Springer, Berlin (1996)

    Google Scholar 

  12. Hebey, E.: Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (1999)

    Google Scholar 

  13. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)

    Article  MathSciNet  Google Scholar 

  14. Jost, J.: Equilibrium maps between metric spaces. Calc. Var. Partial Differ. Equ. 2, 173–204 (1994)

    Article  MathSciNet  Google Scholar 

  15. Jost, J.: Convex functionals and generalized harmonic maps into spaces of nonpositive curvature. Comment. Math. Helv. 70, 659–673 (1995)

    Article  MathSciNet  Google Scholar 

  16. Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York/Heidelberg (1972)

    Google Scholar 

  17. Mayer, U.F.: Gradient flows on nonpositively curved metric spaces and harmonic maps. Commun. Anal. Geom. 6, 199–253 (1998)

    Article  MathSciNet  Google Scholar 

  18. Miyadera, I.: Nonlinear Semigroups. American Mathematical Society, Providence, RI (1992)

    Book  Google Scholar 

  19. Ohta, S., Sturm, K.-T.: Heat flow on Finsler manifolds. Commun. Pure Appl. Math. 62, 1386–1433 (2009)

    Article  MathSciNet  Google Scholar 

  20. Renardy, M., Rogers, R.C.: An Introduction to Partial Differential Equations, 2nd edn. Springer, New York (2004)

    MATH  Google Scholar 

  21. Saloff-Coste, L.: Uniformly elliptic operators on Riemannian manifolds. J. Differ. Geom. 36, 417–450 (1992)

    Article  MathSciNet  Google Scholar 

  22. Shen, Z.: The non-linear Laplacian for Finsler manifolds. In: Antonelli, P.L., Lackey, B.C. (eds.) The Theory of Finslerian Laplacians and Applications, pp. 187–198. Kluwer Academic Publishers, Dordrecht (1998)

    Chapter  Google Scholar 

  23. Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196, 65–131 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ohta, Si. (2021). Nonlinear Heat Flow. In: Comparison Finsler Geometry. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-80650-7_13

Download citation

Publish with us

Policies and ethics