Skip to main content

Project Report on “Load-Balancing for Large-Scale Soot Particle Agglomeration Simulations” (Reprint)

  • Conference paper
  • First Online:
  • 868 Accesses

Abstract

In this reporting period, we have combined several previous efforts to simulate a large-scale soot particle agglomeration with a dynamic, multi-scale turbulent background flow field. We have built upon previous simulations which include 3.2 million particles and have implemented load-balancing within a versatile simulation software. We have furthermore contributed tests of the load-balancing mechanisms for the agglomeration scenario. We have significantly increased the simulation to 109.85 million particles, superposing short-ranged MD with a dynamically changing multi-scale background flow field. Based on extensive software enhancements for the molecular dynamics software ESPResSo, we have started simulating on the Cray XC40 at HLRS. To verify that our setup reproduces essential physics, we have evaluated load-balancing for a scenario, for which we have scaled down the influence of the flow field to make the scenario mostly homogeneous on the subdomain scale. Finally, we have shown that load-balancing still pays off even for the homogenized version of our dynamic soot particle agglomeration scenario. Reprinted from Publication Advances in Parallel Computing, Volume 36: Parallel Computing: Technology Trends, Steffen Hirschmann, Andreas Kronenburg, Colin W. Glass, Dirk Pflüger, “Load-Balancing for Large-Scale Soot Particle Agglomeration Simulations”, pages 147–156, Copyright 2020, with permission from IOS Press [1]. The publication is available at IOS Press through  http://dx.doi.org/10.3233/APC200035.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Extensible Simulation Package for Research on Soft Matter, http://www.espressomd.org.

References

  1. S. Hirschmann, A. Kronenburg, C.W. Glass, D. Pflüger. Load-balancing for large-scale soot particle agglomeration simulations. in Parallel Computing: Technology Trends, vol. 36, ed. by I. Foster, G.R. Joubert, L. Kucera, W.E. Nagel, F. Peters, Advances in Parallel Computing, (IOS Press, March 2020), pp. 147–156. Originally published version of this paper

    Google Scholar 

  2. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1989)

    Google Scholar 

  3. G. Inci et al., Modeling nanoparticle agglomeration using local interactions. Aerosol Sci. Technol. 48(8), 842–852 (2014)

    Article  Google Scholar 

  4. G. Inci et al., Langevin Dynamics Simulation of Transport and Aggregation of Soot Nano-Particles in Turbulent Flows (Flow, Turbulence and Combustion, 2017), pp. 1–21

    Google Scholar 

  5. S. Hirschmann et al., Load balancing with p4est for short-range molecular dynamics with ESPResSo, vol. 32, in Advances in Parallel Computing, ed. by S. Bassini et al. (IOS Press, 2017), pp. 455–464

    Google Scholar 

  6. S. Hirschmann, C.W. Glass, D. Pflüger, Enabling unstructured domain decompositions for inhomogeneous short-range molecular dynamics in ESPResSo. Eur. Phys. J. Spec. Topics 227(14), 1779–1788 (2019)

    Article  Google Scholar 

  7. L. Isella, Y. Drossinos, Langevin agglomeration of nanoparticles interacting via a central potential. Phys. Rev. E 82, 011404 (2010)

    Google Scholar 

  8. M. Smiljanic et al., Developing coarse-grained models for agglomerate growth. Eur. Phys. J. Spec. Topics 227(14), 1515–1527 (2019)

    Article  Google Scholar 

  9. S. Hirschmann, D. Pflüger, C.W. Glass, Towards understanding optimal load-balancing of heterogeneous short-range molecular dynamics, in Workshop on High Performance Computing and Big Data in Molecular Engineering 2016 (HBME 2016), Hyderabad, India, December 2016

    Google Scholar 

  10. S. Hirschmann et al., Load-balancing and spatial adaptivity for coarse-grained molecular dynamics applications, in High Performance Computing in Science and Engineering ed. by W. Nagel, D. Kröner, M. Resch (Springer, Cham, 2018). https://doi.org/10.1007/978-3-030-13325-2_26

  11. C. Burstedde et al., p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103–1133 (2011)

    Article  MathSciNet  Google Scholar 

  12. T. Isaac, C. Burstedde, L.C. Wilcox, O. Ghattas, Recursive algorithms for distributed forests of octrees. SIAM J. Sci. Comput. 37(5), C497–C531 (2015)

    Article  MathSciNet  Google Scholar 

  13. G.M. Morton, A Computer Oriented Geodetic Data Base; and a New Technique in File Sequencing. Technical report, IBM Ltd., 1966

    Google Scholar 

  14. A. Pınar, C. Aykanat, Fast optimal load balancing algorithms for 1D partitioning. J. Parallel Distrib. Comput. 64(8), 974–996 (2004)

    Article  Google Scholar 

  15. W.F. Mitchell, A refinement-tree based partitioning method for dynamic load balancing with adaptively refined grids. J. Parallel Distrib. Comput. 67(4), 417–429 (2007)

    Article  MathSciNet  Google Scholar 

  16. S. Schambeger, J.M. Wierum, Graph partitioning in scientific simulations: multilevel schemes versus space-filling curves. in International Conference on Parallel Computing Technologies, vol. 2763, LNCS, (Springer, Heidelberg, 2003), pp. 165–179. https://doi.org/10.1007/978-3-540-45145-7_14

  17. B. Hendrickson, T.G. Kolda, Graph partitioning models for parallel computing. Parallel Comput. 26(12), 1519–1534 (2000)

    Article  MathSciNet  Google Scholar 

  18. S. Eibl, U. Rüde, A systematic comparison of runtime load balancing algorithms for massively parallel rigid particle dynamics. Comput. Phys. Commun. 244, 76–85 (2019)

    Article  Google Scholar 

  19. M. Buchholz, Framework Zur Parallelisierung von Molekulardynamiksimulationen in Verfahrenstechnischen Anwendungen (Verlag Dr. Hut, Munich, 2010)

    Google Scholar 

  20. M. Buchholz, H.-J. Bungartz, J. Vrabec, Software design for a highly parallel molecular dynamics simulation framework in chemical engineering. J. Comput. Sci. 2(2), 124–129 (2011)

    Article  Google Scholar 

  21. C. Niethammer et al., ls1 mardyn: the massively parallel molecular dynamics code for large systems. J. Chem. Theory Comput. 10(10), 4455–4464 (2014)

    Article  Google Scholar 

  22. B.J. Leimkuhler et al., Integration methods for molecular dynamics. in Mathematical Approaches to Biomolecular Structure and Dynamics, ed. by J.P. Mesirov, K. Schulten, D.W. Sumners, The IMA Volumes in Mathematics and its Applications, vol. 82, (Springer, New York, 1996), pp. 161–185. https://doi.org/10.1007/978-1-4612-4066-2_10

  23. H. Limbach et al., ESPResSo - an extensible simulation package for research on soft matter systems. Comput. Phys. Commun. 174(9), 704–727 (2006)

    Article  Google Scholar 

  24. A. Arnold et al., ESPResSo 3.1: molecular dynamics software for coarse-grained models, in Meshfree Methods for Partial Differential Equations VI, vol. 89, ed. by M. Griebel, M. Schweitzer, Lecture Notes in Computational Science and Engineering, (Springer, Heidelberg, 2013), pp. 1–23

    Google Scholar 

  25. R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (Taylor & Francis Inc., Bristol, 1988)

    Book  Google Scholar 

  26. F. Weik et al., Espresso 4.0 - an extensible software package for simulating soft matter systems. Eur. Phys. J. Spec. Topics 227(14), 1789–1816 (2019)

    Article  Google Scholar 

  27. B.B. Mandelbrot, The Fractal Geometry of Nature, vol. 173 (W. H, Freeman New York, 1983)

    Google Scholar 

  28. R.J. Samson et al., Structural analysis of soot agglomerates. Langmuir 3(2), 272–281 (1987)

    Article  Google Scholar 

  29. U. Köylü, Y. Xing, D.E. Rosner, Fractal morphology analysis of combustion-generated aggregates using angular light scattering and electron microscope images. Langmuir 11(12), 4848–4854 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support provided by the German Research Foundation (DFG) as part of the former Collaborative Research Center (SFB) 716, and the computing time on “Hazel Hen” granted by the High Performance Computing Center Stuttgart (HLRS). Special thanks go to Rudolf Weeber from the ICP, University of Stuttgart, for his expertise and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Hirschmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hirschmann, S., Kronenburg, A., Glass, C.W., Pflüger, D. (2021). Project Report on “Load-Balancing for Large-Scale Soot Particle Agglomeration Simulations” (Reprint). In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering '20. Springer, Cham. https://doi.org/10.1007/978-3-030-80602-6_34

Download citation

Publish with us

Policies and ethics