Skip to main content

Implementation of Lagrangian Surface Tracking for High Performance Computing

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering '20

Abstract

In almost all technically relevant combustion applications, flames occur in turbulent flows. The interaction of turbulent flows with flames is still not fully understood due to the large range of time and length scales which govern combustion processes. One method of studying this interaction is by tracking thermo-physical trajectories of material points on flame surfaces. These trajectories give insight into the local flame dynamics and help to understand the influence of turbulence on flame properties. In this work, a Lagrangian tracking algorithm is presented which performs the tracking of material points on iso-surfaces. Because this tracking method is used in large-scale direct numerical simulations of combustion processes, the focus of the implementation lies on performance. By tracking the position of the Lagrangian particles in barycentric coordinates, efficient algorithms for spatial interpolation and the intersection of particle trajectories with iso-surfaces can be utilized. The code is written in a general way and not restricted to reacting flows but can be used to track any iso-surface. Additionally, the algorithm works by decomposing the computational cells into tetrahedra. This allows the tracking method to work on unstructured meshes with arbitrary cell shapes. The tracking method is implemented in OpenFOAM and applied to the direct numerical simulation of a 3D turbulent flame. The simulations are conducted with a custom solver which makes use of automatically generated, highly optimized code for the computation of chemical reaction rates, which performs up to 20 times faster than OpenFOAM’s implementation. For the turbulent flame, applying the tracking method increases simulation times by less than 5 %, so that the current implementation is well suited to be used during large scale simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. BP energy outlook 2019, (British Petroleum 2019)

    Google Scholar 

  2. T. Poinsot, D. Veynante, Theoretical and Numerical Combustion. (RT Edwards, Inc. 2005)

    Google Scholar 

  3. S. Chaudhuri, Life of flame particles embedded in premixed flames interacting with near isotropic turbulence. Proc. Combust. Inst. 35(2), 1305–1312 (2015)

    Article  Google Scholar 

  4. T. Zirwes, F. Zhang, Y. Wang, P. Habisreuther, J. Denev, Z. Chen, H. Bockhorn, D. Trimis, In-situ flame particle tracking based on barycentric coordinates for studying local flame dynamics in pulsating bunsen flames. in Proceedings of the Combustion Institute, vol. 38, (Elsevier 2020)

    Google Scholar 

  5. S. Pope, The evolution of surfaces in turbulence. Int. J. Eng. Sci. 26(5), 445–469 (1988)

    Article  MathSciNet  Google Scholar 

  6. P. Sripakagorn, S. Mitarai, G. Kosály, H. Pitsch, Extinction and reignition in a diffusion flame: a direct numerical simulation study. J. Fluid Mech. 518, 231–259 (2004)

    Article  Google Scholar 

  7. S. Chaudhuri, Pair dispersion of turbulent premixed flame elements. Phys. Rev. E 91(2), 021001 (2015)

    Article  Google Scholar 

  8. H.L. Dave, A. Mohan, S. Chaudhuri, Genesis and evolution of premixed flames in turbulence. Combust. Flame 196, 386–399 (2018)

    Article  Google Scholar 

  9. T. Zirwes, F. Zhang, P. Habisreuther, M. Hansinger, H. Bockhorn, M. Pfitzner, D. Trimis, “Quasi-DNS dataset of a piloted flame with inhomogeneous inlet conditions,’’ flow. Turb. Combust. 104, 997–1027 (2019)

    Article  Google Scholar 

  10. OpenCFD, OpenFOAM: The Open Source CFD Toolbox. User Guide Version 1.4, OpenCFD Limited. Reading UK, Apr. 2007

    Google Scholar 

  11. T. Zirwes, F. Zhang, A. Jordan, P. Habisreuther, H. Bockhorn, D. Trimis, “Lagrangian tracking of material surfaces in reacting flows, in OpenFOAM Workshop, vol. 15 (2020)

    Google Scholar 

  12. F. Zhang, H. Bonart, T. Zirwes, P. Habisreuther, H. Bockhorn, N. Zarzalis, Direct numerical simulation of chemically reacting flows with the public domain code OpenFOAM, in High Performance Computing in Science and Engineering ’14. ed. by W. Nagel, D. Kröner, M. Resch (Springer, Berlin Heidelberg, 2015), pp. 221–236

    Google Scholar 

  13. F. Zhang, T. Zirwes, P. Habisreuther, H. Bockhorn, A DNS analysis of the evaluation of heat release rates from chemiluminescence measurements in turbulent combustion, ed. by W. Nagel, D. Kröner, M. Resch, in High Performance Computing in Science and Engineering 2016, (Springer, 2016), pp. 229–243 https://doi.org/10.1007/978-3-319-47066-5_16

  14. F. Zhang, T. Zirwes, P. Habisreuther, H. Bockhorn, Effect of unsteady stretching on the flame local dynamics. Combust. Flame 175, 170–179 (2017)

    Article  Google Scholar 

  15. T. Zirwes, F. Zhang, J. Denev, P. Habisreuther, H. Bockhorn, Improved vectorization for efficient chemistry computations in OpenFOAM for large scale combustion simulations, in High Performance Computing in Science and Engineering ’18. ed. by W. Nagel, D. Kröner, M. Resch (Springer, Berlin Heidelberg, 2018), pp. 209–224

    Google Scholar 

  16. T. Zirwes, F. Zhang, J.A. Denev, P. Habisreuther, H. Bockhorn, Automated code generation for maximizing performance of detailed chemistry calculations in OpenFOAM, in High Performance Computing in Science and Engineering 2017. (Springer, 2018), pp. 189–204

    Google Scholar 

  17. T. Zirwes, Effect of stretch on the burning velocity of laminar and turbulent premixed flames, Master’s Thesis, Karlsruhe Institute of Technology (2016)

    Google Scholar 

  18. T. Zirwes, F. Zhang, P. Habisreuther, H. Bockhorn, D. Trimis, Large-scale quasi-DNS of mixed-mode turbulent combustion. PAMM 19(1), e201900420 (2019)

    Article  Google Scholar 

  19. F. Zhang, T. Zirwes, P. Habisreuther, H. Bockhorn, D. Trimis, H. Nawroth, C.O. Paschereit, Impact of combustion modeling on the spectral response of heat release in LES. Combust. Sci. Technol. 191(9), 1520–1540 (2019)

    Article  Google Scholar 

  20. T. Zirwes, F. Zhang, T. Häber, H. Bockhorn, Ignition of combustible mixtures by hot particles at varying relative speeds. Combust. Sci. Tech. 191, 178–195 (2019)

    Article  Google Scholar 

  21. T. Zirwes, F. Zhang, P. Habisreuther, J. Denev, H. Bockhorn, D. Trimis, Optimizing load balancing of reacting flow solvers in openfoam for high performance computing, in Proceedings of 6th ESI OpenFOAM User Conference, vol. 6 (2018)

    Google Scholar 

  22. T. Zirwes, F. Zhang, J. Denev, P. Habisreuther, H. Bockhorn, D. Trimis, Enhancing OpenFOAM’s performance on HPC systems, in High Performance Computing in Science and Engineering ’19. ed. by W. Nagel, D. Kröner, M. Resch (Springer, Berlin Heidelberg, 2019)

    Google Scholar 

  23. M. Soysal, M. Berghoff, T. Zirwes, M. Vef, S. Oeste, A. Brinkman, W. Nagel, A. Streit, “Using On-demand File Systems in HPC Environments, in International Conference on High Performance Computing and Simulation, 6\(^{th}\)Special Session on High Performance Computing Benchmarking and Optimization (2019)

    Google Scholar 

  24. T. Zirwes, F. Zhang, P. Habisreuther, M. Hansinger, H. Bockhorn, M. Pfitzner, D. Trimis, Identification of Flame Regimes in Partially Premixed Combustion from a Quasi-DNS Dataset (Flow, Turbulence and Combustion, 2020)

    Google Scholar 

  25. T. Zirwes, T. Häber, F. Zhang, H. Kosaka, A. Dreizler, M. Steinhausen, C. Hasse, A. Stagni, D. Trimis, R. Suntz, H. Bockhorn, Numerical Study of Quenching Distances for Side-Wall Quenching Using Detailed Diffusion and Chemistry (Flow, Turbulence and Combustion, 2020)

    Google Scholar 

  26. M. Steinhausen, Y. Luo, S. Popp, C. Strassacker, T. Zirwes, H. Kosaka, F. Zentgraf, U. Maas, A. Sadiki, A. Dreizler, C. Hasse, Numerical Investigation of Local Heat-Release Rates and Thermo-Chemical States in Sidewall Quenching of Laminar Methane and Dimethyl Ether Flames (Flow, Turbulence and Combustion, 2020)

    Google Scholar 

  27. M. Hansinger, T. Zirwes, J. Zips, M. Pfitzner, F. Zhang, P. Habisreuther, H. Bockhorn, The Eulerian stochastic fields method applied to large eddy simulations of a piloted flame with inhomogeneous inlet. Flow, Turbul. Combust. 105, 837–867 (2020)

    Article  Google Scholar 

  28. F. Zhang, T. Zirwes, T. Häber, H. Bockhorn, D. Trimis, R. Suntz, Near wall dynamics of premixed flames, in Proceedings of the Combustion Institute, vol. 38 (Elsevier, 2020)

    Google Scholar 

  29. Y. Wang, H. Zhang, T. Zirwes, F. Zhang, H. Bockhorn, Z. Chen, Ignition of dimethyl ether/air mixtures by hot particles: impact of low temperature chemical reactions, in Proceedings of the Combustion Institute, vol. 38 (Elsevier, 2020)

    Google Scholar 

  30. J. Li, Z. Zhao, A. Kazakov, F.L. Dryer, An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kin. 36(10), 566–575 (2004)

    Article  Google Scholar 

  31. A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, C.S. Woodward, Sundials: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. (TOMS) 31(3), 363–396 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Helmholtz Association of German Research Centres (HGF) through the Research Unit EMR, Topic 4 Gasification (34.14.02) and performed on the national supercomputer Cray XC40 Hazel Hen at the High Performance Computing Center Stuttgart (HLRS) and ForHLR II with the acronym DNSbomb funded by the Ministry of Science, Research and the Arts Baden-Württemberg and DFG (“Deutsche Forschungsgemeinschaft”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Zirwes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zirwes, T., Zhang, F., Denev, J.A., Habisreuther, P., Bockhorn, H., Trimis, D. (2021). Implementation of Lagrangian Surface Tracking for High Performance Computing. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering '20. Springer, Cham. https://doi.org/10.1007/978-3-030-80602-6_15

Download citation

Publish with us

Policies and ethics