Azzi, A.A., Bouamor, H.: Fortia1@ the NTCIR-14 FinNum task: enriched sequence labeling for numeral classification. In: Proceedings of the 14th NTCIR Conference on Evaluation of Information Access Technologies, pp. 526–538 (2019)
Google Scholar
Chen, C.C., Huang, H.H., Takamura, H., Chen, H.H.: Overview of the NTCIR-14 FinNum task: fine-grained numeral understanding in financial social media data. In: Proceedings of the 14th NTCIR Conference on Evaluation of Information Access Technologies, pp. 19–27 (2019)
Google Scholar
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis (2019). https://doi.org/10.18653/v1/N19-1423
Guo, J., et al.: Towards complex text-to-SQL in cross-domain database with intermediate representation. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 4524–4535. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/P19-1444
Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. CoRR abs/1508.01991 (2015)
Google Scholar
Jiang, M.T.J., Chen, Y.K., Wu, S.H.: CYUT at the NTCIR-15 FinNum-2 task: tokenization and fine-tuning techniques for numeral attachment in financial tweets. In: Proceedings of the 15th NTCIR Conference on Evaluation of Information Access Technologies, pp. 92–96 (2020)
Google Scholar
Kobayashi, S.: Contextual augmentation: data augmentation by words with paradigmatic relations. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 2 (Short Papers), pp. 452–457. Association for Computational Linguistics, New Orleans (2018). https://doi.org/10.18653/v1/N18-2072
Min, K., MacDonell, S., Moon, Y.-J.: Heuristic and rule-based knowledge acquisition: classification of numeral strings in text. In: Hoffmann, A., Kang, B., Richards, D., Tsumoto, S. (eds.) PKAW 2006. LNCS (LNAI), vol. 4303, pp. 40–50. Springer, Heidelberg (2006). https://doi.org/10.1007/11961239_4
CrossRef
Google Scholar
Munoz, S., Bangdiwala, S.: Interpretation of Kappa and b statistics measures of agreement. J. Appl. Stat. 24, 105–112 (1997). https://doi.org/10.1080/02664769723918
CrossRef
Google Scholar
Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Lingvisticæ Investigationes 30(1), 3–26 (2007). https://doi.org/10.1075/li.30.1.03nad
CrossRef
Google Scholar
Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014). https://doi.org/10.3115/v1/D14-1162
R., S.P., Mandhan, S., Niwa, Y.: Numerical atribute extraction from clinical texts. CoRR abs/1602.00269 (2016). https://doi.org/10.13140/RG.2.1.4763.3365
Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared task: language-independent named entity recognition. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, pp. 142–147 (2003). https://www.aclweb.org/anthology/W03-0419
Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014). https://doi.org/10.1145/2629489
CrossRef
Google Scholar
Weischedel, R., et al.: OntoNotes release 5.0 (2013). https://doi.org/10.35111/XMHB-2B84
Wu, Q., Wang, G., Zhu, Y., Liu, H., Karlsson, B.: DeepMRT at the NTCIR-14 finnum task: a hybrid neural model for numeral type classification in financial tweets. In: Proceedings of the 14th NTCIR Conference on Evaluation of Information Access Technologies, pp. 585–595 (2019)
Google Scholar
Yadav, V., Bethard, S.: A survey on recent advances in named entity recognition from deep learning models. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 2145–2158. Association for Computational Linguistics, Santa Fe (2018). https://www.aclweb.org/anthology/C18-1182
Yu, T., et al.: Spider: a large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 3911–3921. Association for Computational Linguistics, Brussels (2018). https://doi.org/10.18653/v1/D18-1425
Yu, T., et al.: SParC: cross-domain semantic parsing in context. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4511–4523. Association for Computational Linguistics, Florence (2019). https://doi.org/10.18653/v1/P19-1443