Skip to main content

Semi-empirical Theory of Mineral and Radioisotopic Exchange of Living and Inert Matter in the Marine Environment

  • Chapter
  • First Online:
Theory of Radioisotopic and Chemical Homeostasis of Marine Ecosystems

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

  • 172 Accesses

Abstract

This chapter presents a description of the semi-empirical theory of the mineral and radioisotopic exchange of living and inert matter in the marine environment. It describes methods of parametrisation and verification of differential models of closed systems based on the results of field observations and aquarium experiments using radiolabelling. The scope of applicability of compartment-based balance models is substantiated on the basis of assumptions that the sorption of chemical substrates proceeds in accordance with metabolic reactions of the first or zero orders and that their desorption or intravital excretion by hydrobionts is proportional to their content in living or inert matter. Empirical models have been developed that take into account radioactive decay, the size spectra of allochthonous particles and hydrobionts, the generative and somatic growth of individual marine organism specimens, production processes and the specific mass of living and inert matter in the marine environment, the concentration of radionuclides with their isotopic and non-isotopic carriers, physical and chemical sorption processes, the biotic transformation of physicochemical forms of pollutants, as well as the limitation of primary production processes by biogenic elements in the parenteral and alimentary pathways of the mineral nutrition of aquatic organisms, here referred to as hydrobionts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Artsimovich LA (ed) (1963) Spravochnik po yadernoi fizike (translation from English). Gosudarstvennoe izdatel'stvo fiziko-matematicheskoi literatury, Moscow, 631 p (in Russian)

    Google Scholar 

  • Atkins GL (1969) Multicompartment models for biological systems. Methuen, London, p 153

    Google Scholar 

  • Bachurin AA (1968) Matematicheskoe opisanie dinamiki protsessov radioaktivnogo zagryazneniya morskikh organizmov iz vodnoi sredy. Atomizdat, Moscow, 28 p (in Russian)

    Google Scholar 

  • Barinov GV (1965) Obmen 45Ca, 137Cs, 144Ce mezhdu vodoroslyami i morskoi vodoi. Okeanologiya 5(1):111–116 (in Russian)

    Google Scholar 

  • Beasley TM, Lorr HV, Conor JJ (1982) Biokinetic behavior of technetium in the red abalone Haliotis rufescens: a reassessment. Health Phys 43(4):501–507. https://doi.org/10.1097/00004032-198210000-00004

    Article  Google Scholar 

  • Belyaev VI (1964) Metod Lagranzha v kinetike oblachnykh protsessov. Gidrometeoizdat, Leningrad, 187 p (in Russian)

    Google Scholar 

  • Belyaev VI (1972) Uravneniya obmena radionuklida mezhdu morskimi organizmami i sredoi. In: Radiatsionnaya i khimicheskaya ekologiya gidrobiontov. Naukova dumka, Kiev, pp 62–71 (in Russian)

    Google Scholar 

  • Belyaev VI (1978) Teoriya slozhnykh geosistem. Naukova dumka, Kiev, 155 p (in Russian)

    Google Scholar 

  • Benson S (1964) Osnovy khimicheskoi kinetiki. Mir, Moscow, 603 p (in Russian)

    Google Scholar 

  • Berman M (1965) Compartmental analysis in kinetics. In: Stacy RW, Waxman B (eds) Computer in biomedical research, vol 2. Academic, New York, pp 173–201

    Google Scholar 

  • Bernhard M (1971) The utilization of simple models in radioecology. In: Marine radioecology symposium, Hamburg, F. R. Germany, 20–24 Sept 1971

    Google Scholar 

  • Bernhard M, Bruschi A, Möller F (1975) Use of compartmental models in radioecological laboratory studies. Design of radiotracer experiments in marine biological systems. IAEA, Vienna, pp 241–289

    Google Scholar 

  • Bloom SG, Raines DL (1971) Mathematical models for predicting the transport of radionuclides in a marine environment. Bioscience 21(12):691–696. https://doi.org/10.2307/1295750

    Article  Google Scholar 

  • Botov NG (1975) O nekorrektnosti zadach statisticheskoi dinamiki protsessov migratsii radionuklidov. Soobshchenie 3, dep. VINITI, no. 2698-75. Chelyabinsk, 15 p

    Google Scholar 

  • Brownell GL, Berman M, Robertson J (1968) Nomenclature for tracer kinetics. Int J Appl Radiat Isot 19(3):249–262. https://doi.org/10.1016/0020-708X(68)90022-7

    Article  Google Scholar 

  • Brunel L, Dauta A, Guerri MM (1982) Croissance algale: Validation d’un modèle à stock à l’aide de données expérimentales. Ann Limnol 18(2):91–99. https://doi.org/10.1051/limn/1982016

    Article  Google Scholar 

  • Burlakova ZP, Krupatkina DK, Lanskaya LA, Yafarova DL (1979) Vliyanie plotnosti populyatsii morskikh odnokletochnykh vodoroslei na potreblenie fosfora i osnovnye fiziologicheskie pokazateli kletok. In: Vzaimodeistvie mezhdu vodoi i zhivym veshchestvom: proceedings of the international symposium, Odessa, 6–10 Oct 1975, vol 1 (in Russian)

    Google Scholar 

  • Burlakova ZP, Serdyukov OM, Egorov VN, Ivanov VN, Usenko TG, Markova LS (1980) Nakoplenie i vyvedenie tsinka-65 vodorosl’yu Stephanopixis palmeriana v eksperimental’nykh usloviyakh. Ekologiya Morya 2:41–44 (in Russian)

    Google Scholar 

  • Burmaster DE, Chisholm SW (1979) A comparison of two methods for measuring phosphate uptake by Monochrysis lutheri Droop grown in continuous culture. J Exp Mar Biol Ecol 39(2):187–202. https://doi.org/10.1016/0022-0981(79)90013-3

    Article  Google Scholar 

  • Conover RJ, Francis V (1973) The use of radioactive isotopes to measure the transfer of materials in aquatic food chains. Mar Biol 18(4):272–283

    Google Scholar 

  • Cranmore G, Harrison FL (1975) Loss of 137Cs and 60Co from the oyster Crassostrea gigas. Health Phys 28(4):319–333

    Article  Google Scholar 

  • Davies AG (1973) The kinetics of and a preliminary model for the uptake of radio-zinc by Phaeodactylum tricornutum in culture. In: Radioactive contamination of the marine environment: proceeding of a symposium, Seattle, 10–14 July 1972

    Google Scholar 

  • Dobrolyubskii OK (1956) Mikroelementy i zhizn'. Molodaya gvardiya, Moscow, 124 p (in Russian)

    Google Scholar 

  • Droop MR (1962) Organic micronutrients. In: Levin RA (ed) Physiology and biochemistry of algae. Academic, New York, pp 141–159

    Google Scholar 

  • Droop MR (1974) The nutrient status of algal cells in continuous culture. J Mar Biol Assoc UK 54(4):825–855. https://doi.org/10.1017/S002531540005760X

    Article  Google Scholar 

  • Dugdale RC (1967) Nutrient limitation in the sea: dynamics, identification and significance. Limnol Oceanogr 12(4):685–695. https://doi.org/10.4319/lo.1967.12.4.0685

    Article  Google Scholar 

  • Egorov VN (1975) Modelirovanie i analiz nablyudenii na EVM v issledovaniyakh vzaimodeistviya radioaktivnosti morskoi sredy s gidrobiontami. Dissertation abstract, Sevastopol, 28 p (in Russian)

    Google Scholar 

  • Egorov VN (1978) Matematicheskoe modelirovanie kinetiki mineral'nogo obmena morskikh gidrobiontov. In: II Vsesoyuznaya konferentsiya po biologii shel'fa, pt 1. Kiev, pp 37–38 (in Russian)

    Google Scholar 

  • Egorov VN, Ivanov VN (1981) Matematicheskoe opisanie kinetiki obmena tsinka-65 i margantsa-54 u morskikh rakoobraznykh pri nepishchevom puti postupleniya radionuklidov. Ekologiya Morya 6:37–43 (in Russian)

    Google Scholar 

  • Egorov VN, Kulebakina LG (1973) Matematicheskaya model’ obmena 90Sr mezhdu tsistoziroi i morskoi vodoi. In: Radioekologiya vodnykh organizmov, vol 2. Zinatne, Riga, p 305 (in Russian)

    Google Scholar 

  • Egorov VN, Kulebakina LG (1974) Matematicheskaya model’ obmena strontsiya-90 mezhdu tsistoziroi i morskoi vodoi. In: Polikarpov GG (ed) Khemoradioekologiya pelagiali i bentali (metally i ikh radionuklidy v gidrobiontakh i srede). Naukova dumka, Kiev, pp 30–39 (in Russian)

    Google Scholar 

  • Egorov VN, Zesenko AYa (1977) Matematicheskaya model’ kinetiki obmena izotopov v sisteme materinskii i dochernii radionuklidy v morskoi srede – gidrobiont. In: Polikarpov GG, Risik NS (eds) Radiokhemoekologiya Chernogo morya. Naukova dumka, Kiev, pp 17–20 (in Russian)

    Google Scholar 

  • Egorov VN, Rozhanskaya LI, Ivanov VN (1975) Matematicheskoe opisanie protsessa nakopleniya tsinka-65 chernomorskoi vodorosl’yu Ulva rigida. Biologiya Morya 6:63–68 (in Russian)

    Google Scholar 

  • Egorov VN, Ivanov VN, Usenko TG, Filippov NA (1980) Eksperimental’noe izuchenie obmena mikroelementov u zooplanktonnykh organizmov. Ekologiya Morya 2:44–48 (in Russian)

    Google Scholar 

  • Egorov VN, Zesenko AYa, Parkhomenko AV, Finenko ZZ (1982) Matematicheskoe opisanie kinetiki obmena mineral'nogo fosfora odnokletochnymi vodoroslyami. Gidrobiologicheskii zhurnal 18(4):45–50 (in Russian)

    Google Scholar 

  • Egorov VN, Kozlova SI, Kulebakina LG (1983) Kineticheskie zakonomernosti kontsentrirovaniya i obmena rtuti vzveshennym veshchestvom. DAN SSSR 271(6):1488–1491 (in Russian)

    Google Scholar 

  • Egorov VN, Demina NV, Kulebakina LG (1989) Matematicheskoe opisanie kinetiki obmena elementov – khimicheskikh analogov morskimi makrofitami. Izvestiya AN SSSR. Seriya Biologicheskaya 1:79–87 (in Russian)

    Google Scholar 

  • Finenko ZZ, Krupatkina-Akinina DK (1974) Vliyanie neorganicheskogo fosfora na skorost’ rosta diatomovykh vodoroslei. In: Biologicheskaya produktivnost’ yuzhnykh morei. Naukova dumka, Kiev, pp 120–135 (in Russian)

    Google Scholar 

  • Fowler SW, Guary JC (1977) High absorption efficiency for ingested plutonium in crabs. Nature 266(5605):827–828. https://doi.org/10.1038/266827a0

    Article  Google Scholar 

  • Fried J (1968) Compartmental analysis of kinetic processes in multicellular systems: a necessary condition. Phys Med Biol 13(1):31–43. https://doi.org/10.1088/0031-9155/13/1/304

    Article  Google Scholar 

  • Giammatteo PA, Schindler JE, Waldron MC, Freedman ML, Speziale BJ, Zimmerman MJ (1983) Use of equilibrium programs in predicting phosphorus availability. In: Halberg R (ed) Environmental biogeochemistry. Ecol Bull 35:491–501

    Google Scholar 

  • Glass HJ, Garetta AC (1967) Quantitative analysis of exponential curve fitting for biological applications. Phys Med Biol 12(3):379–388

    Article  Google Scholar 

  • Gromov VV, Spitsyn VI, Tolkach VV (1979) Pogloshchenie produktov deleniya planktonnymi organizmami. In: Vzaimodeistvie mezhdu vodoi i zhivym veshchestvom: proceedings of the international symposium, Odessa, 06–10 Oct 1975, vol 2, pp 119–126 (in Russian)

    Google Scholar 

  • Guary JC, Fowler SW (1979) Elimination et répartition du 241Am et du 237Pu chez le moule Mytilus galloprovincialis dans son environnement naturel. Rapports Et Procès-Verbaux Des Réunions Commission Internationale Pour L’exploration Scientifique De La Mer Méditerranée 25–26(5):53–55

    Google Scholar 

  • Hakonson TE, Gallegos AF, Whicker FW (1975) Caesium kinetics data for estimating food consumption rates of trout. Health Phys 29(2):301–306. https://doi.org/10.1097/00004032-197508000-00009

    Article  Google Scholar 

  • Ivanov VN (1979) Vliyanie razlichnykh kontsentratsii stabil'nogo tsinka v morskoi vode na obmen tsinka-65 i rost vodorosli Ulva rigida. Biologiya morya 50:69–71 (iss “Antropogennoe vozdeistvie na morskie organizmy” (in Russian)

    Google Scholar 

  • Ivanov VN, Egorov VN, Rozhanskaya LI (1978) Izuchenie nakopleniya i vyvedeniya 65Zn chernomorskoi vodorosl’yu Ulva rigida v svyazi s ee rostom. Biologiya Morya 44:46–55 (in Russian)

    Google Scholar 

  • Ivanov VN, Egorov VN, Usenko TG, Filippov NA (1979) Izuchenie pishchevogo puti potrebleniya vyvedeniya radionuklidov u zooplanktonnykh organizmov. Biologiya Morya 50:71–74 (in Russian)

    Google Scholar 

  • Ivanov VN, Egorov VN, Shevchenko MM (1980) Postuplenie i vyvedenie tsinka-65 u chernomorskogo Idotea baltica basteri Aud. Gidrobiologicheskii Zhurnal 16(1):69–72 (in Russian)

    Google Scholar 

  • Ivanov VN, Egorov VN, Popovichev VN, Shevchenko MM (1986) Matematicheskoe modelirovanie kinetiki obmena mikroelementov u morskikh rakoobraznykh pri pishchevom i parenteral’nom putyakh ikh postupleniya. Ekologiya Morya 23:68–77 (in Russian)

    Google Scholar 

  • Khailov KM, Popov AE (1983) Kontsentratsiya zhivoi massy kak regulyator funktsionirovaniya vodnykh organizmov. Ekologiya Morya 15:3–16 (in Russian)

    Google Scholar 

  • Kopchenova NV, Maron IA (1972) Vychislitel'naya matematika v primerakh i zadachakh. Nauka, Moscow, 366 p (in Russian)

    Google Scholar 

  • Kowal NE (1971) Model of elemental assimilation by invertebrates. J Theor Biol 31(3):469–474. https://doi.org/10.1016/0022-5193(71)90022-1

    Article  Google Scholar 

  • Krug GK, Sosulin YuA, Fatuev VA (1977) Planirovanie eksperimenta v zadachakh identifikatsii i ekstrapolyatsii. Nauka, Moscow, 208p (in Russian)

    Google Scholar 

  • Lánczos K (1961) Prakticheskie metody prikladnogo analiza. Fizmatgiz, Moscow, 284 p (in Russian)

    Google Scholar 

  • Lazorenko GE, Egorov VN (1994) Rol’ donnykh otlozhenii v izvlechenii radiotseziya iz vodnoi sredy. In: Radioekologiya: uspekhi i perspektivy: materials of the scientific seminar, Sevastopol, 03–07 Oct 1994 (in Russian)

    Google Scholar 

  • Lazorenko GE, Polikarpov GG (1990) Sposobnost’ donnykh otlozhenii Kakhovskogo vodokhranilishcha k svyazyvaniyu radionuklidov strontsiya i tseziya. Doklady AN USSR. Ser. B 8:64–67 (in Russian)

    Google Scholar 

  • Lotka AJ (1925) Elements of physical biology. Williams & Wilkins Comp., Baltimore, 495 p

    Google Scholar 

  • Lowman FG, Rice TR, Richards FA (1971) Accumulation and redistribution of radionuclides by marine organisms. In: Radioactivity in the marine environment. The National Academies Press, Washington, DC, pp 162–199. https://doi.org/10.17226/18745

  • Lyubimova SA (1973) Sorbtsiya 90Sr i 137Cs donnymi otlozheniyami presnovodnogo ozera. In: Radioekologiya vodnykh organizmov. Zinatne, Riga, pt 2, pp 98–101 (in Russian)

    Google Scholar 

  • Malakhova LV, Egorov VN, Malakhova TV (2019) Khlororganicheskie soedineniya v komponentakh ekosistem sevastopol'skikh bukht, morskoi akvatorii prirodnogo zapovednika “Mys Mart'yan” i Yaltinskogo porta. Voda: khimiya i ekologiya 1–2:57–62 (in Russian)

    Google Scholar 

  • Mansouri-Aliabadi M, Sharp R (1985) Passage of selected heavy metals from Sphaerotilis (Bacteria: Chlamydobacteriales) to Paramecium caudatum (Protozoa: Ciliata). Water Res 19(6):697–699. https://doi.org/10.1016/0043-1354(85)90115-0

    Article  Google Scholar 

  • Matishov GG, Bufetova MV, Egorov VN (2017) Normirovanie potokov postupleniya tyazhelykh metallov v Azovskoe more. Nauka Yuga Rossii 13(1):44–58 (in Russian)

    Google Scholar 

  • Menshutkin VV, Finenko ZZ (1975) Matematicheskoe modelirovanie protsessa razvitiya fitoplanktona v usloviyakh okeanicheskogo apvellinga. Trudy Instituta Okeanologii AN SSSR 102:175–183 (in Russian)

    Google Scholar 

  • Monod I (1942) Recherches sur la croissance des cultures bactériennes. Université de Paris, Thèse de doctorat

    Google Scholar 

  • Morozov NP, Petukhov SA (1979) Trace elements in hydrobionts and biotope of the surface layer of seawater in the North Atlantic and the Mediterranean. In: ICES council meeting, 7 p

    Google Scholar 

  • Nakamura R, Nakahara M, Suzuki Y, Ueda T (1982) Effects of chemical forms and intake pathways on the accumulation of radioactive cobalt by the abalone Haliotis discus. Bull Jpn Soc Sci Fish 48(11):1639–1644. https://doi.org/10.2331/suisan.48.1639

    Article  Google Scholar 

  • Nalimov VV (1971) Teoriya eksperimenta. Nauka, Moscow, 207 p (in Russian)

    Google Scholar 

  • Neiheisel J, Mcdaniel WL, Panteleyev GP (1992) Sediment parameters of northwest Black Sea shelf and slope: Implications for transport of heavy metals and radionuclides. Chem Ecol 6(1–4):117–131. https://doi.org/10.1080/02757549208035267

    Article  Google Scholar 

  • Nelepo BA (1970) Yadernaya gidrofizika. Atomizdat, Moscow, 224 p (in Russian)

    Google Scholar 

  • Nesmeyanov AN (1978) Radiokhimiya. Khimiya, Moscow, 560 p (in Russian)

    Google Scholar 

  • Osterberg C, Pirsi W (1971) Radioaktivnost’ i pishchevye tsepi v okeane. In: Voprosy radioekologii. Atomizdat, Moscow, pp 240–252 (in Russian)

    Google Scholar 

  • Parkhomenko AV, Egorov VN (1979) Kinetika obmena 86Rb i 137Cs u morskikh bakterii. Gidrobiologicheskii Zhurnal 15(5):94–100 (in Russian)

    Google Scholar 

  • Patin SA (1979) Vliyanie zagryazneniya na biologicheskie resursy i produktivnost’ Mirovogo okeana. Pishchevaya promyshlennost’, Moscow, 304 p (in Russian)

    Google Scholar 

  • Patton A (1968) Energetika i kinetika biokhimicheskikh protsessov. Mir, Moscow, 159 p (in Russian)

    Google Scholar 

  • Pentreath RJ (1973) The roles of food and water in the accumulation of radionuclides by marine teleost and elasmobranch fish. In: Radioactive contamination of the marine environment: proceeding of a symposium, Seattle, 10–14 July 1972

    Google Scholar 

  • Petipa TS (1981) Trofodinamika kopepod v morskikh planktonnykh soobshchestvakh: zakonomernosti potrebleniya pishchi i prevrashcheniya energii u osobi. Naukova dumka, Kiev, 242 p (in Russian)

    Google Scholar 

  • Piontkovsky SA, Egorov VN, Ivanov VN (1983) Opyt ispol’zovaniya tsinka-65 dlya izucheniya ritma pitaniya planktonnykh rakoobraznykh. Ekologiya Morya 15:84–88 (in Russian)

    Google Scholar 

  • Polikarpov GG (1964) Radioekologiya morskikh organizmov. Atomizdat, Moscow, 295 p (in Russian)

    Google Scholar 

  • Polikarpov GG (1966) Radioecology of aquatic organisms. Reinhold Publ. Co., New York, p 314

    Google Scholar 

  • Polikarpov GG, Bachurin AA (1970) Nakoplenie strontsiya i kal'tsiya rodstvennymi organizmami v razlichnykh fiziko-geograficheskikh usloviyakh Mirovogo okeana. In: Polikarpov GG (ed) Morskaya radioekologiya. Naukova dumka, Kiev, pp 244–248 (in Russian)

    Google Scholar 

  • Polikarpov GG, Egorov VN (1986) Morskaya dinamicheskaya radiokhemoekologiya. Energoatomizdat, Moscow, 176 p (in Russian)

    Google Scholar 

  • Polikarpov GG, Egorov VN (eds) (2008) Radioekologicheskii otklik Chernogo morya na chernobyl'skuyu avariyu. EKOSI-Gidrofizika, Sevastopol, 667 p (in Russian)

    Google Scholar 

  • Polikarpov GG, Egorov VN, Zesenko AYa, Svetasheva SK (1983) Prevrashchenie khimicheskikh form ioda chernomorskimi vodoroslyami-makrofitami i biotransformatsionnaya sposobnost’ morskikh fitotsenozov. In: Sostoyanie, perspektivy uluchsheniya i ispol'zovaniya morskoi ekologicheskoi sistemy pribrezhnoi chasti Kryma: abstracts of a scientific and practical conference dedicated to the 200th anniversary of the hero city of Sevastopol. Sevastopol, pp 127–128 (in Russian)

    Google Scholar 

  • Polikarpov GG, Lazorenko GE, Demina NV, Tereshchenko NN (1987a) Radioekologicheskie parametry nakopleniya i vyvedeniya 137Cs donnymi otlozheniyami chernomorskogo limana (v laboratornykh usloviyakh). Doklady AN USSR. Ser. B 5:74–76 (in Russian)

    Google Scholar 

  • Polikarpov GG, Svetasheva SK, Egorov VN (1987b) Role of chemical species of iodine in its accumulation by seaweed. Actes du 8ème Colloque d'océanographie médicale, 9–12 Oct 1985, vol 85–86. Nice, pp 95–96

    Google Scholar 

  • Polikarpov GG, Egorov VN, Lazorenko GE, Kulev YuD (1995) Matematicheskoe opisanie kinetiki vzaimodeistviya poverkhnostnogo sloya donnykh otlozhenii s radionuklidami v vodnoi srede. Doklady NAN Ukrainy 5:148–152 (in Russian)

    Google Scholar 

  • Popovichev VN, Egorov VN (1987) Kineticheskie kharakteristiki parenteral’nogo i alimentarnogo pogloshcheniya 137Cs chernomorskimi idoteyami. Ekologiya Morya 27:68–72 (in Russian)

    Google Scholar 

  • Riziĉ I (1972) Two-compartment model of radionuclides accumulation into marine organisms. I. Accumulation from a medium of constant activity. Marine Bio 15(2):105–113. https://doi.org/10.1007/BF00353638

  • Romankevich EA (1977) Geokhimiya organicheskogo veshchestva v okeane. Nauka, Moscow, 256 p (in Russian)

    Google Scholar 

  • Sazhina LI (1980) Plodovitost’, skorost’ rosta nekotorykh kopepod Atlanticheskogo okeana. Biologiya Morya 3:56–61 (in Russian)

    Google Scholar 

  • Sheppard CW (1948) The theory of the study of transfers within a multi-compartment system using isotopic tracers. J Appl Phys 19(1):70–76. https://doi.org/10.1063/1.1697874

    Article  Google Scholar 

  • Sheppard CW, Householder AS (1951) The mathematical basis of the interpretation of tracer experiments in closed steady-state systems. J Appl Phys 22(4):510–520. https://doi.org/10.1063/1.1699992

    Article  Google Scholar 

  • Shulman GE (1972) Belkovyi rost i nakoplenie energeticheskikh rezervov – dve storony problemy rosta ryb. In: Energeticheskie aspekty rosta i obmena vodnykh zhivotnykh: abstracts of reports of the All-Union symposium, Sevastopol, 9–11 Oct 1972, pp 259–260 (in Russian)

    Google Scholar 

  • Solomon AK (1960) Compartmental methods of kinetic analysis. In: Comar CL, Bronner F (eds) Mineral metabolism vol 1, pt A. Academic, New York, pp 119–168

    Google Scholar 

  • Stetsyuk AP, Egorov VN (2018) Sposobnost’ morskikh vzvesei kontsentrirovat’ rtut’ v zavisimosti ot ee soderzhaniya v akvatoriyakh shel’fa. Sistemy Kontrolya Okruzhayushchei Sredy 13(33):123–132 (in Russian)

    Google Scholar 

  • Sukal'skaya SYa, Likhtarev IA (1976) Ob eksperimental'nom modelirovanii i matematicheskom opisanii obmena radionuklidov v sisteme “vodnaya sreda – gidrobiont”. Gidrobiologicheskii zhurnal 12(4):55–62 (in Russian)

    Google Scholar 

  • Sushchenya LM (1972) Intensivnost’ dykhaniya rakoobraznykh. Naukova dumka, Kiev, 193 p (in Russian)

    Google Scholar 

  • Tereshchenko NN, Egorov VN (1983) Kineticheskie kharakteristiki pogloshcheniya i vyvedeniya fosfora zelenoi vodorosl'yu Ulva rigida Ag. In: Sostoyanie, perspektivy uluchsheniya i ispol'zovaniya morskoi ekologicheskoi sistemy pribrezhnoi chasti Kryma: abstracts of a scientific and practical conference dedicated to the 200th anniversary of the hero city of Sevastopol. Sevastopol, pp 185–186 (in Russian)

    Google Scholar 

  • Tereshchenko NN, Egorov VN (1985) Kineticheskie zakonomernosti pogloshcheniya i vyvedeniya fosfora chernomorskoi zelenoi vodorosl’yu Ulva rigida Ag. DAN USSR. Seriya B 1:79–82 (in Russian)

    Google Scholar 

  • Timofeev-Resovskii NV (1957) Primenenie izluchenii i izluchatelei v eksperimental’noi biogeotsenologii. Botanicheskii Zhurnal 42(2):161–194 (in Russian)

    Google Scholar 

  • Timofeeva-Resovskaya EA (1963) Raspredelenie radioizotopov po osnovnym komponentam presnovodnykh vodoemov. Sverdlovsk, 78 p (in Russian)

    Google Scholar 

  • Troshin AS (1957) O svyazannom i svobodnom natrii v skeletnykh myshtsakh lyagushki. Biofizika 2(5):617–627 (in Russian)

    Google Scholar 

  • Tsytsugina VG, Lazorenko GE (1983) Rol’ mitoticheskogo deleniya v pogloshchenii biogennykh elementov prirodnymi populyatsiyami fitoplanktona. Ekologiya Morya 12:30–34 (in Russian)

    Google Scholar 

  • Turn GA, Joshi GHV, Chauhan VD, Rao PS (1982) Effect of metal ions on the growth of Sargassum swartzii. Ind J Marine Sci 11(4):338

    Google Scholar 

  • Urbakh VYu (1964) Biometricheskie metody. Nauka, Moscow, 362 p (in Russian)

    Google Scholar 

  • Vernadsky VI (1929) O kontsentratsii radiya zhivymi organizmami. Doklady Akademii Nauk SSSR. Seriya A 2:33–34 (in Russian)

    Google Scholar 

  • Vinberg GG, Anisimov SI (1966) Matematicheskaya model’ vodnoi ekosistemy. In: Fotosintez sistem vysokoi produktivnosti. Nauka, Moscow, pp 213–223 (in Russian)

    Google Scholar 

  • Vinogradov ME, Menshutkin VV (1977) Portretnye deterministskie modeli funktsionirovaniya ekosistem pelagiali. In: Biologiya okeana, vol 2. Nauka, Moscow, pp 261–276 (in Russian)

    Google Scholar 

  • Voitsekhovitch OV, Borzilov VA, Konoplev AV (1991) Hydrological aspects of radionuclide migration in water bodies following the Chernobyl accident. In: Proceedings of the seminar on comparative assessment of the environmental impact of radionuclides released during three major nuclear accidents: Kyshtym, Windscale, Chernobyl, vol 2. Luxembourg, 1–5 Oct 1990

    Google Scholar 

  • Volterra V (1972) Matematicheskaya teoriya bor'by za sushchestvovanie. Nauka, Moscow, 216 p (in Russian)

    Google Scholar 

  • Wartas CJ, MacFarlane J, Francois MM (1985) Nickel accumulation by Scenedesmus and Daphnia: Food-chain transport and geochemical implications. Can J Fish Aquat Sci 42(4):724–730. https://doi.org/10.1139/f85-093

    Article  Google Scholar 

  • Weers AW (1973) Uptake and loss of 65Zn and 60Co by the mussel Mytilus edulis L. In: Radioactive contamination of the marine environment: proceeding of a symposium, Seattle, 10–14 July 1972

    Google Scholar 

  • Weers AW (1975a) The effects of temperature on the uptake and retantion of 60Co and 65Zn by the common shrimp Crandon crandon (L.). In: Combined effects of radioactive, chemical and thermal releases to the environment, Stockholm, 2–5 June 1975

    Google Scholar 

  • Weers AW (1975b) Uptake of cobalt-60 from sea water and from labeled food by the common shrimp Crangon crangon (L). In: International symposium on impacts of nuclear releases into the aquatic environment. IAEA, Vienna, pp 359–361

    Google Scholar 

  • Zaika VE (1972) Udel'naya produktsiya bespozvonochnykh. Naukova dumka, Kiev, 145 p (in Russian)

    Google Scholar 

  • Zlobin VS (1968) Dinamika nakopleniya radiostrontsiya nekotorymi burymi vodoroslyami i vliyanie solenosti morskoi vody na koeffitsienty nakopleniya. Okeanologiya 8(1):78–85 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Egorov, V. (2021). Semi-empirical Theory of Mineral and Radioisotopic Exchange of Living and Inert Matter in the Marine Environment. In: Theory of Radioisotopic and Chemical Homeostasis of Marine Ecosystems. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-030-80579-1_3

Download citation

Publish with us

Policies and ethics