Skip to main content

Biogeochemical Mechanisms of the Interaction of Living and Inert Matter with the Radioactive and Chemical Components of the Marine Environment

  • Chapter
  • First Online:
Theory of Radioisotopic and Chemical Homeostasis of Marine Ecosystems

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

  • 190 Accesses

Abstract

The structure of biogeochemical mechanisms is considered in terms of the primary abiotic and biotic factors of the interaction of living and inert matter with the radioactive and chemical components of the marine environment. Chemical substances contained in the waters of the world’s oceans are presented in terms of their radioisotopic composition and physico-chemical forms. It is shown that current rates of anthropogenic influx of chemicals and their compounds constitute a significant factor in the depletion of the carrying capacity of waters. On the example of the transport of fission radionuclides from the site of the accident at the Chernobyl nuclear power plant, it is demonstrated that the influence of hydrometeorological factors manifests itself at different spatial and temporal scales—from diurnal and synoptic in time to global in terms of space. Under nonstationary conditions, the impact of waves, currents, convection and diffusion processes for chemicals or their compounds dissolved in (or not differing in specific density from) water is always directed towards a decrease in the distribution gradients of their concentration in the aquatic environment. Between 1986 and 2000, such trends were identified in the vertical distribution profiles of 90Sr and 137Cs in the waters of the western halistatic region of the Black Sea. For stationary conditions, the influence of interactive hydrodynamic mechanisms is determined by the ecological carrying capacity characteristics of the aquatic host medium for radionuclides and their isotopic and non-isotopic carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Translator's Note. The term “World Ocean” is used in the original Russian to suggest a unified oceanic system.

References

  • Aizatullin TA, Leonov AV (1977) Kinetika i mekhanizm transformatsii soedinenii fosfora i potrebleniya kisloroda v vodnoi ekologicheskoi sisteme. Vodnye Resursy 2:41–55 (in Russian)

    Google Scholar 

  • Aizatullin TA, Lebedev VL, Khailov KM (1984) Okean. Fronty, dispersii, zhizn’. Gidrometeoizdat, Leningrad, 192 p. (in Russian)

    Google Scholar 

  • Aleksakhin RM (1963) Radioaktivnye zagryazneniya pochvy i rastenii. Izdatel’stvo AN SSSR, Moscow, 167 p. (in Russian)

    Google Scholar 

  • Amiard JC, Amiard-Triquet C, Berthet B, MĂ©tayer C (1986) Contribution to the ecotoxicological study of cadmium, lead, copper and zinc in the mussel Mytilus edulis. I.Field study. Mar Biol 90(3):425–431. https://doi.org/10.1007/BF00428566

    Article  Google Scholar 

  • Ancellin J, Guegueniat P, Germain P (1979) RadioĂ©cologie marine. Étude du devenir des radionuclĂ©ides rejetĂ©s en milieu marin et applications Ă  la radioprotection. Eyrolles, Paris, 256 p

    Google Scholar 

  • Arashkevich EG, Vinogradov GM, Semenova TN (1986) Osedanie fekal’nykh pellet planktonnykh rakoobraznykh Barentseva morya. In: Ekologicheskaya i biologicheskaya produktivnost’ Barentseva morya: abstracts of reports of the All-Union Conference, Murmansk. (in Russian)

    Google Scholar 

  • Bachurin AA (1968) Matematicheskoe opisanie dinamiki protsessov radioaktivnogo zagryazneniya morskikh organizmov iz vodnoi sredy. Atomizdat, Moscow, 28 p. (in Russian)

    Google Scholar 

  • Baranova DD (1967) Sravnitel’noe izuchenie sorbtsii i desorbtsii razlichnykh radionuklidov morskimi melkovodnymi gruntami. In: Voprosy biookeanografii. Naukova dumka, Kiev, pp 219–226. (in Russian)

    Google Scholar 

  • Barinov GV (1965) Obmen 45Ca, 137Cs, 144Ce mezhdu vodoroslyami i morskoi vodoi. Okeanologiya 5(1):111–116 (in Russian)

    Google Scholar 

  • Baxter MS (1983) The disposal of high-activity nuclear wastes in the oceans. Mar Pollut Bull 14(4):126–132

    Article  Google Scholar 

  • Belyaev VI, Kolesnikov AG, Nelepo BA (1966) Opredelenie intensivnosti radioaktivnogo zarazheniya v okeane na osnove novykh dannykh o protsesse obmena. In: Proceedings of the III United Nations international conference on the peaceful uses of atomic energy, Geneva

    Google Scholar 

  • Belyayev ST, Borovoy AA, Demin VF, Rimsky-Korsakov AA, Kheruvimov AN (1991) The Chernobyl source term. In: Proceedings of the seminar on comparative assessment of the environmental impact of radionuclides released during three major nuclear accidents: Kyshtym, Windscale, Chernobyl, vol 1. Luxembourg, 1–5 Oct 1990

    Google Scholar 

  • Bergner PE (1985) On relation between bioaccumulation and weight of organisms. Ecol Model 27(3–4):207–220. https://doi.org/10.1016/0304-3800(85)90003-1

    Article  Google Scholar 

  • Bernhard M (1971) The utilization of simple models in radioecology. In: Marine radioecology symposium, Hamburg, F. R. Germany, 20–24 Sept 1971

    Google Scholar 

  • Beznosov VN, Plekhanov SE (1986) Soderzhanie nekotorykh metallov v chernomorskikh midiyakh. Ekologiya 5:80–81 (in Russian)

    Google Scholar 

  • Bhat SJ, Krishnaswamy S, Lal D, Rama MWS (1968) 234Th/238U ratios in the ocean. Earth Planet Sci Lett 5:483–491. https://doi.org/10.1016/S0012-821X(68)80083-4

    Article  Google Scholar 

  • Blatov AS, Ivanov VA (1992) Gidrologiya i gidrodinamika shel’fovoi zony Chernogo morya. Naukova dumka, Kiev, 244 p. (in Russian)

    Google Scholar 

  • Bogdanov YuA, Gurvich EG, Lisitsyn AP (1979) Model’ nakopleniya organicheskogo ugleroda v donnykh osadkakh Tikhogo okeana. Geokhimiya 6:918–927 (in Russian)

    Google Scholar 

  • Bogdanov YuA, Gurvich EG, Lisitsyn AP (1983) Mekhanizm okeanskoi sedimentatsii i differentsiatsii khimicheskikh elementov v okeane. In: Biokhimiya okeana. Nauka, Moscow, pp. 165–200. (in Russian)

    Google Scholar 

  • Bopaiah AB (1985) Microbial synthesis of macroparticulate matter. Mar Ecol Prog Ser 20:241–251. https://doi.org/10.3354/meps020241

    Article  Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic Press, London, New York, p 333

    Google Scholar 

  • Breittmayer JP, Zsurger NV (1983) Accumulation du mercure dans les organes de la moule: Effets de la dose contaminante et de la taille des organismes. Revue Internationale D’ocĂ©anographie MĂ©dicale 70–71:87–97

    Google Scholar 

  • Brown MP, McLaughlin JA, O’Connor JM, Wyman K (1982) A mathematical model of PCB bioaccumulation in plankton. Ecol Model 15(1):29–47. https://doi.org/10.1016/0304-3800(82)90066-7

    Article  Google Scholar 

  • Bryan GW (1976) Heavy metal contamination in the sea. In: Johnston R (ed) Marine pollution. Academic Press, London, New York, San Francisco, pp 185–302

    Google Scholar 

  • Bryan GW, Ward E (1962) Potassium metabolism and the accumulation of 137Caesium by decapod Crustacea. J Mar Biol Assoc UK 42(2):199–241. https://doi.org/10.1017/S0025315400001314

    Article  Google Scholar 

  • Burlakova ZP, Lavrent’ev NA (1975) K voprosu o skorosti oborota rastvorennykh organicheskikh veshchestv v morskoi vode kak funktsii plotnosti kletok v populyatsiyakh. In: VII All-Union conference on marine chemistry: abstracts. (in Russian)

    Google Scholar 

  • Burlakova ZP, Krupatkina DK, Lanskaya LA, Yafarova DL (1979) Vliyanie plotnosti populyatsii morskikh odnokletochnykh vodoroslei na potreblenie fosfora i osnovnye fiziologicheskie pokazateli kletok. In: Vzaimodeistvie mezhdu vodoi i zhivym veshchestvom: proceedings of the international symposium, Odessa, vol 1, 6–10 Oct 1975. (in Russian)

    Google Scholar 

  • Chabert D (1984) Bioaccumulation du cadmium chez un mollusque bivalve: Cerastoderma glaucum, Poiret 1789, après contamination. Vie Marine 6:57–61

    Google Scholar 

  • Champ MA, Park PK (1982) Global marine pollution bibliography: ocean dumping of municipal and industrial wastes. IFI/Plenum Data Company, New York, p 399

    Book  Google Scholar 

  • Corcoran EF, Kimball JF (1968) Pogloshchenie, nakoplenie i obmen 90Sr u fitoplanktona otkrytogo morya. Voprosy radioekologii. Atomizdat, Moscow, pp 231–240

    Google Scholar 

  • Database of IBSS radiation and chemical biology department (for the period 1964–2006): Water. Hydrobionts. Bottom sediments (2006) RCBD computer program, created in 1992 in Paradox, Sevastopol, 425 p. (in Russian)

    Google Scholar 

  • Davies AG (1973) The kinetics of and a preliminary model for the uptake of radio-zinc by Phaeodactylum tricornutum in culture. In: Radioactive contamination of the marine environment: proceeding of a symposium, Seattle, 10–14 July 1972

    Google Scholar 

  • Demina LL (1982) Formy migratsii tyazhelykh metallov v okeane (na rannikh stadiyakh okeanskogo osadkoobrazovaniya). Nauka, Moscow, 119 p. (in Russian)

    Google Scholar 

  • Downs JN, Lorenzen CJ (1985) Carbon: pheopigment ratios of zooplankton fecal pellets as an index of herbivorous feeding. Limnol Oceanogr 30(5):1024–1036. https://doi.org/10.4319/lo.1985.30.5.1024

    Article  Google Scholar 

  • Droop MR (1974) The nutrient status of algal cells in continuous culture. J Mar Biol Assoc UK 54(4):825–855. https://doi.org/10.1017/S002531540005760X

    Article  Google Scholar 

  • Dugdale RC (1967) Nutrient limitation in the sea: dynamics, identification and significance. Limnol Oceanogr 12(4):685–695. https://doi.org/10.4319/lo.1967.12.4.0685

    Article  Google Scholar 

  • Duke T, Willis J, Price T, Fischler K (1969) Influence of environmental factors on the concentrations of 65Zn by an experimental community. In: Nelson DJ, Evans FC (eds) Symposium on radioecology: proceedings of the 2nd national symposium, Ann Arbor, Michigan, 15–17 May 1967

    Google Scholar 

  • Egorov VN, Ivanov VN (1981) Matematicheskoe opisanie kinetiki obmena tsinka-65 i margantsa-54 u morskikh rakoobraznykh pri nepishchevom puti postupleniya radionuklidov. Ekologiya Morya 6:37–43 (in Russian)

    Google Scholar 

  • Egorov VN, Polikarpov GG, Stokozov NA, Kulebakina LG, Lazorenko GE, Mirzoeva NYu (1994) Some data on the fate of 90Sr in the aquatic system, including the region Chernobyl NPP accident, the Black Sea and the Aegean Sea. In: Proceedings of the seminar “European commission radiation protection 70”: the radiological exposure of the population of the European community to radioactivity in the Mediterranean Sea. MARINA-MED project, Rome, 17–19 May 1994

    Google Scholar 

  • Egorov VN, Polikarpov GG, Stokozov NA, Mirzoyeva NYu (2005) Estimation and prediction of 90Sr and 137Cs outflow from the Black Sea via the bosporus strait after The NPP Chernobyl accident. Morskoj Ekologicheskij Zhurnal 4(4):33–41 (in Russian)

    Google Scholar 

  • Egorov VN, Polikarpov GG, Stokozov NA, Mirzoeva NYu (2008) Balans i dinamika polei kontsentratsii 137Cs i 90Sr v vodakh Chernogo morya. In: Polikarpov GG, Egorov VN (eds) Radioekologicheskii otklik Chernogo morya na chernobyl’skuyu avariyu. EKOSI-Gidrofizika, Sevastopol, pp 217–250. (in Russian)

    Google Scholar 

  • Elder DL, Fowler SW, Polikarpov GG (1979) Remobilization of sediment-associated PCBs by the worm Nereis diversicolor. Bull Environ Contam Toxicol 21(1):448–452. https://doi.org/10.1007/bf01685451

    Article  Google Scholar 

  • Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282(5740):677–680. https://doi.org/10.1038/282677a0

    Article  Google Scholar 

  • Florence TM (1983) Trace element speciation and aquatic toxicology. TrAC, Trends Anal Chem 2(7):162–166. https://doi.org/10.1016/0165-9936(83)87023-X

    Article  Google Scholar 

  • Fontane MA (1972) A new science-marine molysmology. In: Proceedings of the 2nd international ocean development conference, Tokyo, 05–07 Oct 1972

    Google Scholar 

  • Formy elementov i radionuklidov v morskoi vode (1974) Nauka, Moscow, 173 p. (in Russian)

    Google Scholar 

  • Fowler SW, Benayen J (1979) The influence of factors of surroundings on the flow of selenium through the marine organisms. In: Interaction between water and living matter: proceedings of the international symposium, Odessa, vol 1, 6–10 Oct 1975

    Google Scholar 

  • Fowler SW, Guary JC (1977) High uptake efficiency for ingested plutonium in crabs. Nature 266(5605):827–828. https://doi.org/10.1038/266827a0

    Article  Google Scholar 

  • Fowler SW, Small LF (1972) Sinking rates of euphausiid fecal pellets. Limnol Oceanogr 17(2):293–296. https://doi.org/10.4319/lo.1972.17.2.0293

    Article  Google Scholar 

  • Galli C, Zaretta A (1979) Accumulation of cesium by some marine phytoplankters. Rapports Et Procès-Verbaux Des RĂ©unions Commission Internationale Pour L’exploration Scientifique De La Mer MĂ©diterranĂ©e 25–26(5):57–61

    Google Scholar 

  • Garsia AP, Fowler SW (1972) Analysis de microelementos en invertebrados marinos del Golfo de California. In: Mexico: national oceanographic congress, Mexico, pp 140–169

    Google Scholar 

  • Glasser R (1962) Beitrag zur Frage der Tragerabhangigkeit bei der Anreicherung Radioaktiver Isotope durch Wasserorganismen aus Wasseriger Losung. Biologisches Zentralblatt 81(5):17–27

    Google Scholar 

  • Goldberg ED (1978) Modelirovanie khimicheskikh protsessov. In: Modelirovanie morskikh sistem. Gidrometeoizdat, Leningrad, pp 163–182. (in Russian)

    Google Scholar 

  • Gorbenko YuA, Kryshev II (1985) Statisticheskii analiz dinamiki morskoi ekosistemy mikroorganizmov. Naukova dumka, Kiev, 143 p. (in Russian)

    Google Scholar 

  • Gromov VV, Spitsyn VI (1975) Iskusstvennye radionuklidy v morskoi srede. Atomizdat, Moscow, 223 p. (in Russian)

    Google Scholar 

  • Gromov VV, Shakhova NF, Emel’yanov EM (1979) Adsorbtsionnyi zakhvat tsinka donnymi otlozheniyami Atlanticheskogo okeana. Okeanologiya 19(5):835–839. (in Russian)

    Google Scholar 

  • Gudiksen PH, Harvey TF, Lange R (1989) Chernobyl source term, atmospheric dispersion and dose estimation. Health Phys 57(5):697–706. https://doi.org/10.1097/00004032-198911000-00001

    Article  Google Scholar 

  • Gudiksen PH, Harvey TF, Lange R (1991) Chernobyl source term estimation. In: Proceedings of the seminar on comparative assessment of the environmental impact of radionuclides released during three major nuclear accidents: Kyshtym, Windscale, Chernobyl, vol 1. Luxembourg, 1–5 Oct 1990

    Google Scholar 

  • Harvey RS (1971) Temperature effects on the maturation of midges (Tendipedidae) and their sorption of radionuclides. Health Phys 20(6):613–616. https://doi.org/10.1097/00004032-197106000-00008

    Article  Google Scholar 

  • Hattori A (1982) The nitrogen cycle in the sea with special reference to biogeochemical processes. J Oceanogr Soc Jpn 38(4):245–265. https://doi.org/10.1007/BF02111107

    Article  Google Scholar 

  • Hiyama Y, Shimizu M (1964) On the concentration factors of radioactive J Co, Fe and Ru in marine organisms. Rec Oceanogr Works Japan 7(2):43–77

    Google Scholar 

  • Horne R (1972) Morskaya khimiya. Mir, Moscow, 400 p. (in Russian)

    Google Scholar 

  • Hornung H, Krumgalz BS, Cohen Y (1984) Mercury pollution in sediments, benthic organisms and inshore fishes of Haifa Bay, Israel. Mar Environ Res 12(3):191–208. https://doi.org/10.1016/0141-1136(84)90003-5

    Article  Google Scholar 

  • Il’in LA, Pavlovskii OA (1988) Radioekologicheskie posledstviya avarii na Chernobyl’skoi AES i mery, predprinyatye s tsel’yu ikh smyagcheniya. Atomnaya energiya 65(2):119–129. (in Russian)

    Google Scholar 

  • Ivanov VN (1974) Nakoplenie 54Mn, 59Fe, 60Co, 65Zn, 106Ru, 144Ce okeanicheskim zooplanktonom. In: Polikarpov GG (ed) Khemoradioekologiya pelagiali i bentali (metally i ikh radionuklidy v gidrobiontakh i srede). Naukova dumka, Kiev, pp 211–246. (in Russian)

    Google Scholar 

  • IMCO/FAO/UNESCO/WMO/WHO/IAEA/UN joint group of experts on the scientific aspects of marine pollution (GESAMP) (1977) United Nations, New York, 35 p

    Google Scholar 

  • Ivanov VN, Rozhanskaya LI (1972) Povedenie Zn-65 v morskoi vode i nakoplenie ego gidrobiontami. In: Polikarpov GG (ed) Radiatsionnaya i khimicheskaya ekologiya gidrobiontov. Naukova dumka, Kiev, pp 42–51. (in Russian)

    Google Scholar 

  • Ivleva EV, Parchevskii VP, Lanskaya LA (1984) Vliyanie temperatury, solenosti i pH na nakoplenie 65Zn morskimi odnokletochnymi vodoroslyami. In: Polikarpov GG (ed) Morskaya radiokhemoekologiya i problema zagryaznenii. Naukova dumka, Kiev, pp 78–82. (in Russian)

    Google Scholar 

  • Izrael YuA (ed) (1968) Radioaktivnye vypadeniya ot yadernykh vzryvov (translation from English) Mir, Moscow, 344 p. (in Russian)

    Google Scholar 

  • Izrael YuA (ed) (1990) Chernobyl’: radioaktivnoe zagryaznenie prirodnykh sred. Gidrometeoizdat, Leningrad, 296 p. (in Russian)

    Google Scholar 

  • Jefferson T, Ferrante JG (1979) Zooplankton fecal pellets in aquatic ecosystems. Bioscience 29(11):670–677

    Article  Google Scholar 

  • Kepkay PE (1986) Microbial binding of trace metals and radionuclides in sediments: Results from an in situ dialysis technique. J Environ Radioact 3(2):85–102. https://doi.org/10.1016/0265-931X(86)90030-5

    Article  Google Scholar 

  • Ketchum BU, Bowen VT (1958) Biological factors determining the distribution of radioisotopes in the sea. In: Proceedings of the 2nd United Nations international conference of the peaceful uses of atomic energy, Geneva, 1–3 Sept 1958, vol 33. United Nations Publ., pp 429–433

    Google Scholar 

  • Khailov KM (1974) Trofodinamika i biokhimiya v evolyutsii morskoi ekologii. In: Biokhimicheskaya trofodinamika v morskikh pribrezhnykh ekosistemakh. Naukova dumka, Kiev, pp 3–13. (in Russian)

    Google Scholar 

  • Khailov KM, Monina TL (1976) Organotrofiya u morskikh makrofitov kak funktsiya plotnosti ikh populyatsii v usloviyakh eksperimenta. Biologiya Morya 6:29–34 (in Russian)

    Google Scholar 

  • Khailov KM, Popov AE (1983) Kontsentratsiya zhivoi massy kak regulyator funktsionirovaniya vodnykh organizmov. Ekologiya Morya 15:3–16 (in Russian)

    Google Scholar 

  • Kiselev IA (1980) Plankton morei i kontinental’nykh vodoemov, vol 2. Raspredelenie, sezonnaya dinamika, pitanie i znachenie. Nauka, Leningrad, 440 p. (in Russian)

    Google Scholar 

  • Kryshev I, Sazykina T (1986) Matematicheskoe modelirovanie migratsii radionuklidov v vodnykh ekosistemakh. Energoatomizdat, Moscow, 255 p. (in Russian)

    Google Scholar 

  • Kuenzler EJ (1965) Zooplankton distribution and isotope turnover during operation swordfish. US AEC Document NYO-3145–1 (New York Operations Office). New York, 12 p

    Google Scholar 

  • Kulebakina LG (1984) Vliyanie solenosti na nakoplenie radionuklidov morskimi makrofitami. In: Polikarpov GG (ed) Morskaya radiokhemoekologiya i problema zagryaznenii. Naukova dumka, Kiev, pp 40–65. (in Russian)

    Google Scholar 

  • Kulebakina LG (1996) Izuchenie migratsii 90Sr i 137Cs v ekosistemakh shel’fa Chernogo morya i nizhnego Dnepra posle Chernobyl’skoi avarii. In: Radioekologiya: uspekhi i perspektivy: materials of the international scientific seminar, Sevastopol, 3–7 Oct 1994. (in Russian)

    Google Scholar 

  • Kulebakina LG, Kozlova SI (1985) Raspredelenie rastvorennoi i vzveshennoi form rtuti v Atlanticheskom okeane i v Sredizemnom more v sloe 0–100 m. Okeanologiya 25(2):248–253 (in Russian)

    Google Scholar 

  • Kulebakina LG, Parchevskaya DS (1973) Vliyanie solenosti i kontsentratsii Sr i Ca v vode na nakoplenie 90Sr tsistoziroi. In: Radioekologiya vodnykh organizmov, vol 2. Zinatne, Riga, pp 305–307. (in Russian)

    Google Scholar 

  • Kumagai H, Saeki K (1983) The variations with growth in heavy metal contents of rock shell. Nippon Suisan Gakkaishi 49(12):1917–1920. https://doi.org/10.2331/suisan.49.1917

    Article  Google Scholar 

  • La Molta EJ, Shich WK (1979) Diffusion and reaction in biological nitrification. J Environ Eng Div 105(4):655–673

    Article  Google Scholar 

  • Lakshmanan PT, Nambisan PNK (1979) Accumulation of mercury by the mussel Perna viridis Linnaeus. Current Sci (india) 48(5):672–674

    Google Scholar 

  • Lazorenko GE (2000) Molismologicheskoe issledovanie vodnoi ekosistemy Severo-Krymskogo kanala. In: Chteniya pamyati N. V. Timofeeva–Resovskogo: 100-letiyu so dnya rozhdeniya N. V. Timofeeva-Resovskogo posvyashchaetsya. EKOSI-Gidrofizika, Sevastopol, pp 100–107

    Google Scholar 

  • Lazorenko GE (2002) Accumulation of 210Po by the Black Sea fishes. In: High levels of natural radiation and radon areas: radiation dose and health effects: proceedings of the 5th international conference, Munich (Germany), 4–7 Sept 2000

    Google Scholar 

  • Lebedev VL, Aizatullin TA, Khailov KM (1974) Okean kak dinamicheskaya sistema. Gidrometeoizdat, Leningrad, 203 p. (in Russian)

    Google Scholar 

  • Lebedeva LP (1986) Produktsiya detrita v planktonnykh soobshchestvakh tropicheskikh raionov Tikhogo okeana. In: Biodifferentsiatsiya osadochnogo veshchestva v moryakh i okeanakh. Rostov-on-Don, pp 117–122. (in Russian)

    Google Scholar 

  • Levis DI, Harvey W, Hodson RE (1984) Application of single- and multiphasic Michaelis–Menten kinetics to predictive modeling for aquatic ecosystems. Environ Toxicol Chem 3(4):563–574. https://doi.org/10.1002/etc.5620030406

    Article  Google Scholar 

  • Linnik PN (1986) Formy migratsii tyazhelykh metallov i ikh deistvie na gidrobiontov. Eksperimental’naya Vodnaya Toksikologiya 11:114–154 (in Russian)

    Google Scholar 

  • Lisitsyn AP (1982) Lavinnaya sedimentatsiya. In: Lavinnaya sedimentatsiya v okeane. Izdatel’stvo Rostovskogo universiteta, Rostov-on-Don, pp 3–58. (in Russian)

    Google Scholar 

  • Lisitsyn AP, Vinogradov ME (1983) Global’nye zakonomernosti raspredeleniya zhizni v okeane i biogeokhimiya vzvesi i donnykh osadkov. In: Biogeokhimiya okeana. Nauka, Moscow, pp 112–I27. (in Russian)

    Google Scholar 

  • Lorenzen CJ, Welscheyer NA, Copping AE, Vernet M (1983) Sinking rates of organic particles. Limnol Oceanogr 28(4):766–769. https://doi.org/10.4319/lo.1983.28.4.0766

    Article  Google Scholar 

  • Lowman FG, Rice TR, Richards FA (1971) Accumulation and redistribution of radionuclides by marine organisms. In: Radioactivity in the marine environment. The National Academies Press, Washington, DC, pp 162–199. https://doi.org/10.17226/18745

  • Luci C, Jelisavciĉ O (1970) Uptake of 137Cs in some marine animals in relation to the temperature, salinity, weight and moulting. Internationale Revue Der Gesamten Hydrobiologie Und Hydrographie 50(5):783–796. https://doi.org/10.1002/iroh.19700550506

    Article  Google Scholar 

  • Mackas DL, Denman KL, Abbott MA (1985) Plankton patchiness: biology in the physical vernacular. Bull Mar Sci 37(2):652–674

    Google Scholar 

  • Maclsaac JJ, Dugdale RC (1969) The kinetics of nitrate and ammonium uptake by natural populations of marine phytoplankton. Deep-Sea Res Oceanogr Abstr 16(1):45–57. https://doi.org/10.1016/0011-7471(69)90049-7

    Article  Google Scholar 

  • Makarova NP (1984) O metodakh izucheniya plotnostnoi regulyatsii funktsii u gidrobiontov i interpretatsii dannykh. Ekologiya Morya 18:88–93 (in Russian)

    Google Scholar 

  • Malakhova LV (2006) Soderzhanie i raspredelenie khlororganicheskikh ksenobiotikov v komponentakh ekosistem Chernogo morya. Dissertation abstract, Sevastopol, 24 p. (in Russian)

    Google Scholar 

  • Mauchline J (1963) The biological and geographical distribution in the Irish Sea of radioactive effluent from Windscale Works 1959 to 1960: Technical report, Rep. no. AHSB (RP) R 27, 37 p

    Google Scholar 

  • McLeese DW, Ray S (1984) Uptake and excretion of cadmium, CdEDTA, and zinc by Macoma baltica. Bull Environ Contam Toxicol 32(1):85–92. https://doi.org/10.1007/bf01607469

    Article  Google Scholar 

  • Menzel DW (1974) Primary productivity, dissolved and particulate organic matter, and the sites of oxidation of organic matter. In: Goldberg E (ed) The sea, vol 5. Wiley Interscience Publishers. New York, London, pp 659–678

    Google Scholar 

  • Miller WL, Blake NJ, Byrne RH (1985) Uptake of Zn65 and Mn54 into body tissues and renal concretions by the Southern Quahog, Mercenaria campechiensis (Gmelin): effects of elevated phosphate and metal concentrations. Mar Environ Res 17(2–4):167–171. https://doi.org/10.1016/0141-1136(85)90072-8

    Article  Google Scholar 

  • Mirzoeva NYu, Polikarpov GG, Egorov VN, Arkhipova SI, Korkishko NF (2000) Radioekologicheskii monitoring vodnykh ekosistem sevastopol’skikh bukht posle avarii na ChAES. In: Chteniya pamyati N. V. Timofeeva–Resovskogo: 100-letiyu so dnya rozhdeniya N. V. Timofeeva-Resovskogo posvyashchaetsya. EKOSI-Gidrofizika, Sevastopol, pp 131–138. (in Russian)

    Google Scholar 

  • Mirzoeva NYu, Egorov VN, Polikarpov GG (2005) Soderzhanie 90Sr v donnykh otlozheniyakh Chernogo morya posle avarii na Chernobyl’skoi AES i ego ispol’zovanie v kachestve radiotrassera dlya otsenki skorosti osadkonakopleniya. In: Sistemy kontrolya okruzhayushchei sredy: sredstva i monitoring. EKOSI-Gidrofizika, Sevastopol, pp 276–282. (in Russian)

    Google Scholar 

  • Mirzoeva NYu, Arkhipova SI, Korkishko NF, Migal’ LV (2006) Sravnitel’naya otsenka raspredeleniya 90Sr v gidrobiontakh vodoemov blizhnikh i znachitel’no udalennykh ot avariinoi ChAES. In: Problemy biologicheskoi okeanografii XXI veka: abstracts of international conference dedicated to the 135th anniversary of IBSS, Sevastopol, 19–21 Sept 2006. (in Russian)

    Google Scholar 

  • Morozov NP (1983) Khimicheskie elementy v gidrobiontakh i pishchevykh tsepyakh. In: Biogeokhimiya okeana. Nauka, Moscow, pp 128–164. (in Russian)

    Google Scholar 

  • Nechaev LN, Lyapin EN, Gusev DI et al. (1972) Kinetika obmena nekotorykh radioaktivnykh izotopov v tkanyakh ryb pri razlichnom temperaturno-solevom rezhime. In: Biologicheskoe deistvie vneshnikh i vnutrennikh istochnikov radiatsii. Meditsina, Moscow, pp 348–352. (in Russian)

    Google Scholar 

  • Nelepo BA (1970) Yadernaya gidrofizika. Atomizdat, Moscow, 224 p. (in Russian)

    Google Scholar 

  • Nesmeyanov AN (1978) Radiokhimiya. Khimiya, Moscow, 560 p. (in Russian)

    Google Scholar 

  • Osterberg CL, Patullo J, Pearcy W (1964) Zinc-65 in euphausiids as related to Columbia river water off the oregon coast. Limnol Oceanogr 9(2):249–257. https://doi.org/10.4319/lo.1964.9.2.0249

    Article  Google Scholar 

  • Ozmidov RV (1968) Gorizontal’naya turbulentnost’ i turbulentnyi obmen v okeane. Nauka, Moscow, 199 p. (in Russian)

    Google Scholar 

  • Ozmidov RV (1986) Peremezhaemost’ gidrofizicheskikh parametrov i ee rol’ v formirovanii osobennostei gidrokhimicheskikh i gidrobiologicheskikh polei okeana. In: Antropogennaya evtrofikatsiya i izmenchivost’ ekosistem Chernogo morya: materials of the international symposium, Moscow, 16–19 Oct 1984. (in Russian)

    Google Scholar 

  • Paffenhöfer GA, Knowles SC (1979) Ecological implications of fecal pellet size, production and consumption by copepods. J Mar Res 37(1):35–49

    Google Scholar 

  • Parchevskii VP, Burlakova ZP, Khailov KM, Lanskaya LA (1977) Vliyanie plotnosti populyatsii morskikh odnokletochnykh vodoroslei na nakoplenie radionuklidov. Ekologiya 3:96–98 (in Russian)

    Google Scholar 

  • Patin SA (1979) Vliyanie zagryazneniya na biologicheskie resursy i produktivnost’ Mirovogo okeana. Pishchevaya promyshlennost’, Moscow, 304 p. (in Russian)

    Google Scholar 

  • Patton A (1968) Energetika i kinetika biokhimicheskikh protsessov. Mir, Moscow, 159 p. (in Russian)

    Google Scholar 

  • Pavlova EV (1971) Dvizhenie peridinievykh vodoroslei. In: Ekologicheskaya fiziologiya morskikh planktonnykh vodoroslei. Naukova dumka, Kiev, pp 143–167. (in Russian)

    Google Scholar 

  • Pellenbarg RE, Church TM (1979) The estuarine surface microlayer and trace metal cycling in a salt marsh. Science 203(4384):1010–1012. https://doi.org/10.1126/science.203.4384.1010

    Article  Google Scholar 

  • Petersen G (1984) Energy flow in comparable aquatic ecosystems from different climatic zones. Rapports Et Procès-Verbaux Des RĂ©unions Commission Internationale Pour L’exploration Scientifique De La Mer MĂ©diterranĂ©e 183:119–125

    Google Scholar 

  • Phillips DJH (1977) Effects of salinity on the net uptake of zinc by the common mussel Mytilus edulis. Mar Biol 41(1):79–88. https://doi.org/10.1007/BF00390584

    Article  Google Scholar 

  • Pickering DC, Lucas JW (1962) Uptake of radiostrontium by an alga and the influence of calcium ion in the water. Nature 193(4820):1046–1047

    Article  Google Scholar 

  • Polikarpov GG (1964) Radioekologiya morskikh organizmov. Atomizdat, Moscow, 295 p. (in Russian)

    Google Scholar 

  • Polikarpov GG (1966) Radioecology of aquatic organisms. Reinhold Publ. Co., New York, p 314

    Google Scholar 

  • Polikarpov GG (1967) Problemy radiatsionnoi i khimicheskoi ekologii morskikh organizmov. Okeanologiya 7(4):561–570 (in Russian)

    Google Scholar 

  • Polikarpov GG, Egorov VN (1986) Morskaya dinamicheskaya radiokhemoekologiya. Energoatomizdat, Moscow, 176 p. (in Russian)

    Google Scholar 

  • Polikarpov GG, Egorov VN (eds) (2008) Radioekologicheskii otklik Chernogo morya na chernobyl’skuyu avariyu. EKOSI-Gidrofizika, Sevastopol, 667 p. (in Russian)

    Google Scholar 

  • Polikarpov GG, Zaitsev YuP (1969) Gorizonty i strategiya poiska v morskoi biologii: report at the Presidium of the Academy of Sciences of the Ukrainian SSR, 16 May 1968. Naukova dumka, Kiev, 31 p. (in Russian)

    Google Scholar 

  • Polikarpov GG, Zesenko AYa, Lyubimov AA (1972) Dinamika fiziko-khimicheskogo prevrashcheniya radionuklidov mnogovalentnykh elementov v srede i nakoplenie ikh gidrobiontami. In: Polikarpov GG (ed) Radiatsionnaya i khimicheskaya ekologiya gidrobiontov. Naukova dumka, Kiev, pp 5–42. (in Russian)

    Google Scholar 

  • Popov NI (1971) Khimicheskie aspekty morskoi radioekologii. In: Radioekologiya. Atomizdat, Moscow, pp 385–395 (in Russian)

    Google Scholar 

  • Popov NI, Fedorov KN, Orlov VM (1979) Morskaya voda: spravochnoe rukovodstvo. Nauka, Moscow, 327 p (in Russian)

    Google Scholar 

  • Popovichev VN, Egorov VN (2008) Obmen mineral’nogo fosfora vzveshennym veshchestvom v foticheskoi zone Chernogo morya. In: Polikarpov GG, Egorov VN (eds) Radioekologicheskii otklik Chernogo morya na Chernobyl’skuyu avariyu. EKOSI-Gidrofizika, Sevastopol, pp 548–574. (in Russian)

    Google Scholar 

  • Pospelova NV, Egorov VN, Chelyadina NS, Nekhoroshev MV (2018) Soderzhanie medi v organakh i tkanyakh Mytilus galloprovincialis Lamarck, 1819 i potok ee sedimentatsionnogo deponirovaniya v donnye osadki v khozyaistvakh chernomorskoi akvakul’tury. Morskoi Biologicheskii Zhurnal 3(4):64–75. https://doi.org/10.21072/mbj.2018.03.4.07

    Article  Google Scholar 

  • Ramade P (1980) Radioecologie des milieux aquatiques. Masson, Paris, New York, Barcelone, Milan, p 191

    Google Scholar 

  • Rice TR (1965) The role of plants and animals in the cycling of radionuclides in the marine environment. Health Phys 11(9):953–964

    Article  Google Scholar 

  • Ring M, Heerkloss R, Schnese W (1985) Einfluss von temperatur, pH-wert und nahrungsqualität unter laborbedingungen auf Eurytemora affinis. Wissenschaftliche Zeitschrift der Wilhelm-Pieck-Universität Rostock, Mathematisch-naturwissenschaftliche Reihe 34(6):22–25

    Google Scholar 

  • Risik NS (1970) Mikroraspredelenie i nakoplenie urana v morskikh organizmakh. Dissertation abstract, Sevastopol, 32 p. (in Russian)

    Google Scholar 

  • Riziĉ I (1972) Two-compartment model of radionuclides accumulation into marine organisms. I. Accumulation from a medium of constant activity. Mar Biol 15(2):105–113. Doi https://doi.org/10.1007/BF00353638

  • Rodach G (1983) Simulations of phytoplankton dynamics and their interactions with other system components during FLEX’76. In: SĂĽndermann J, Lenz W (eds) North sea dynamics. Springer, Berlin, Heidelberg, pp 584–610. https://doi.org/10.1007/978-3-642-68838-6_40

  • Romankevich EA (1977) Geokhimiya organicheskogo veshchestva v okeane. Nauka, Moscow, 256 p. (in Russian)

    Google Scholar 

  • Rudyakov YuA, Tseitlin VB (1980) Skorost’ passivnogo pogruzheniya planktonnykh organizmov. Okeanologiya 20(5):732–738 (in Russian)

    Google Scholar 

  • Sayhan T, Erdener B, ĂśnlĂĽ Y (1985) Biokinetics of silver (110mAg) in marine isopod. Rapports Et Procès-Verbaux Des RĂ©unions Commission Internationale Pour L’exploration Scientifique De La Mer MĂ©diterranĂ©e 29(7):235–337

    Google Scholar 

  • Sazhina LI (1980) Plodovitost’, skorost’ rosta nekotorykh kopepod Atlanticheskogo okeana. Biologiya Morya 3:56–61 (in Russian)

    Google Scholar 

  • Scott R (1954) A study of cesium accumulation by marine algae. In: Proceedings of the 2nd radioisotope conference, vol 1. Medical and Physiological Applications, Oxford, 19–23 July 1954

    Google Scholar 

  • Skazkina EP, Danilevskii NN (1976) Ob ispol’zovanii khamsoi kormovoi bazy Chernogo morya. Trudy VNIRO 116(2):36–42 (in Russian)

    Google Scholar 

  • Skopintsev BA (1950) Organicheskoe veshchestvo v prirodnykh vodakh (vodnyi gumus). Gidrometeoizdat, Leningrad, 290 p (Trudy Gosudarstvennogo okeanograficheskogo instituta 17(29)). (in Russian)

    Google Scholar 

  • Skreblin M, Stegnar P, Prosenc A (1985) Effect of selenium on the uptake of mercury from sea-water by the shrimp Palaemon elegans. In: 7 JournĂ©es d’études sur les pollutions marines en MediterranĂ©e, Lucerne, 11–13 Oct 1984, pp 827–830

    Google Scholar 

  • Skulskii IA, Lyubimov AA, Glazunov VV (1974) Protsessy gidroliza i adsorbtsii. In: Khemoradioekologiya pelagiali i bentali. Naukova dumka, Kiev, pp 192–201. (in Russian)

    Google Scholar 

  • Small LF, Fowler SW (1973) Turnover and vertical transport of zinc by the euphausiid Meganyctiphanes norvegica in the Ligurian Sea. Mar Biol 18(4):284–290

    Google Scholar 

  • Staresiniĉ N, Farrington J, Gagosian BR, Clifford CN, Hulburt EM (1983) Downward transport of particulate matter in the Peru coastal upwelling: role of theanchoveta, Engraulis ringens. In: Suess E, Theide J (eds) Coastal upwelling and its sediment record. Plenum, New York, London, pt A, pp 225–240

    Google Scholar 

  • Starik IE (1960) Osnovy radiokhimii. Izdatel’stvo AN SSSR, Moscow, Leningrad, 459 p. (in Russian)

    Google Scholar 

  • Stary J, Zeman A (1983) Radionuclides in the investigation of the cumulation of toxic elements on algae and fish. Isotopenpraxis Isotopes Environ Health Stud 19(7):243–244. https://doi.org/10.1080/10256018308544900

    Article  Google Scholar 

  • Stokozov NA (2003) Dolgozhivushchie radionuklidy 137Cs i 90Sr v Chernom more posle avarii na Chernobyl’skoi AES i ikh ispol’zovanie v kachestve trasserov protsessov vodoobmena. Dissertation abstract, Sevastopol, 21 p. (in Russian)

    Google Scholar 

  • Stokozov NA, Egorov VN, Mirzoeva NYu (2008) Otsenki krupnomasshtabnogo vertikal’nogo vodoobmena v Chernom more s ispol’zovaniem 134Cs, 137Cs i 90Sr v kachestve trasserov. In: Polikarpov GG, Egorov VN (eds) Radioekologicheskii otklik Chernogo morya na chernobyl’skuyu avariyu. EKOSI-Gidrofizika, Sevastopol, pp 448–464. (in Russian)

    Google Scholar 

  • Styro DB, Bumyalene ZhV, Kadzhene GI, Kleiza IV, Lukinskine MV, Pogrebnyak EV (1991) Ob”emnaya aktivnost’ radionuklidov iskusstvennogo proiskhozhdeniya v poverkhnostnykh vodakh Baltiiskogo morya v avguste – dekabre 1988 g. Atomnaya Energiya 70(6):405–408 (in Russian)

    Google Scholar 

  • Suess E, MĂĽller PJ (1980) Productivity sedimentation rate and sedimentary organic matter in the oceans. II. Elemental fractionation. In: Colloques Internationaux du CNRS, Paris, France, pp 17–26

    Google Scholar 

  • Taguchi S (1976) Relationship between photosynthesis and cell size of marine diatoms. J Phycol 12(2):185–189. https://doi.org/10.1111/j.1529-8817.1976.tb00499.x

    Article  Google Scholar 

  • Tereshchenko NN (2003) Izuchenie soderzhaniya radionuklidov plutoniya v donnykh otlozheniyakh Streletskoi bukhty. In: Radiatsionnaya bezopasnost’ territorii. Radioekologiya goroda: abstracts of international conference, Moscow, 24–26 Nov 2003

    Google Scholar 

  • Tereshchenko NN (2005) Radionuklidy plutoniya v komponentakh pribrezhnykh chernomorskikh ekosistem v akvatorii Sevastopolya. Naukovi zapiski Ternopil’s’koho natsional’noho pedahohichnoho universitetu. Seriya: Biologiya. Spetsialnyi vypusk: Hidroekolohiya 4(27):243–247

    Google Scholar 

  • Tereshchenko NN (2006) Akkumulirovanie izotopov plutoniya gidrobiontami Chernogo morya. In: Abstracts of the V congress on radiation research (radiobiology, radioecology, radiation safety), Moscow, 10–14 Apr 2006

    Google Scholar 

  • ThĂ©bault H, Rodriguez y Baena AM, Andral B, Barisic D, Benedicto Albaladejo J, Bologa A, Boudjenoun R, Delfanti R, Egorov V, El Khoukhi T, Florou H, Kniewald G, Noureddine A, Patrascu V, Pham MK, Scarpato A, Stokozov N, Topcuoglu S, Warnau M (2008) 137Cs baseline levels in the Mediterranean and Black Sea: a cross-basin survey of the CIESM mediterranean mussel watch programme. Mar Pollut Bulle 57(6–12):801–806. https://doi.org/10.1016/j.marpolbul.2007.11.010

  • Timofeev-Resovskii NV (1957) Primenenie izluchenii i izluchatelei v eksperimental’noi biogeotsenologii. Botanicheskii Zhurnal 42(2):161–194 (in Russian)

    Google Scholar 

  • Timofeeva-Resovskaya EA, Popova EI, Polikarpov GG (1958) O nakoplenii presnovodnymi organizmami khimicheskikh elementov iz vodnykh rastvorov. I. Kontsentratsiya radioaktivnykh izotopov fosfora, tsinka, strontsiya, ruteniya, tseziya i tseriya raznymi vidami presnovodnykh mollyuskov. Byulleten’ MOIP. Otdelenie biologii 63(3):65–78. (in Russian)

    Google Scholar 

  • Timoshchuk VI, Kulebakina LG, Filippov IA (1970) Raspredelenie strontsiya-90 v poverkhnostnom sloe Sredizemnogo morya. In: Radioekologicheskie issledovaniya Sredizemnogo morya. Naukova dumka, Kiev, pp 150–156. (in Russian)

    Google Scholar 

  • Titlyanova AA, Ivanov VI (1961) Pogloshchenie tseziya tremya vidami presnovodnykh rastenii iz rastvorov razlichnoi kontsentratsii. Doklady AN SSSR 136(3):721–722 (in Russian)

    Google Scholar 

  • Trapeznikov AV, Molchanova IV, Karavaeva EN, Trapeznikova VN (2007) Migratsiya radionuklidov v presnovodnykh i nazemnykh ekosistemakh, vol 1. Izdatel’stvo Ural’skogo universiteta, Ekaterinburg, 480 p. (in Russian)

    Google Scholar 

  • Tseitlin VB (1984) Raschet velichiny potoka organicheskogo veshchestva, postupayushchego na dno okeana. In: Biogeokhimiya prikontinental’nykh raionov okeana: abstracts of reports of the All-Union meeting, Nal’chik. (in Russian)

    Google Scholar 

  • Tsytsugina VG, Lazorenko GE (1983) Rol’ mitoticheskogo deleniya v pogloshchenii biogennykh elementov prirodnymi populyatsiyami fitoplanktona. Ekologiya Morya 12:30–34 (in Russian)

    Google Scholar 

  • Vedernikov VI, Starodubtsev ER (1971) Pervichnaya produktsiya i khlorofill v yugo-vostochnoi chasti Tikhogo okeana. Trudy Instituta Okeanologii AN SSSR 89:33–42 (in Russian)

    Google Scholar 

  • Vernadsky VI (1929) O kontsentratsii radiya zhivymi organizmami. Doklady Akademii Nauk SSSR. Seriya A 2:33–34 (in Russian)

    Google Scholar 

  • Vernadsky VI (1965) Khimicheskoe stroenie biosfery Zemli i ee okruzheniya. Nauka, Moscow, 374 p. (in Russian)

    Google Scholar 

  • Vinogradov AP (1967) Vvedenie v geokhimiyu okeana. Nauka, Moscow, 213 p. (in Russian)

    Google Scholar 

  • Vinogradov ME (1968) Vertikal’noe raspredelenie okeanicheskogo zooplanktona. Nauka, Moscow, 319 p. (in Russian)

    Google Scholar 

  • Vinogradov ME (1986) Zavisimost’ protsessov detritoobrazovaniya ot prostranstvenno-vremennykh izmenenii planktonnykh soobshchestv. In: Biodifferentsiatsiya osadochnogo veshchestva v moryakh i okeanakh. Rostov-on-Don, pp 66–76. (in Russian)

    Google Scholar 

  • Vinogradov ME, Lisitsyn AP (eds) (1983) Biogeokhimiya okeana. Nauka, Moscow, 367 p. (in Russian)

    Google Scholar 

  • Weers AW (1975) The effects of temperature on the uptake and retantion of 60Co and 65Zn by the common shrimp Crandon crandon (L.). In: Combined effects of radioactive, chemical and thermal releases to the environment, Stockholm, 2–5 June 1975

    Google Scholar 

  • Wright DA (1977) The effect of salinity on cadmium uptake by the tissues of the shore crab Carcinus maenas. J Exp Biol 67:137–146

    Article  Google Scholar 

  • Youngbluth MJ (1985) Investigations of soft-bodied zooplankton and marine show using manned research submersibles. Bull Mar Sci 27(2):782–783

    Google Scholar 

  • Zaitsev YuP (1967) Giponeiston i ego radioekologicheskoe znachenie. In: Voprosy biookeanografii. Naukova dumka, Kiev, pp 180–184. (in Russian)

    Google Scholar 

  • Zaitsev YuP (1970) Morskaya neistonologiya. Naukova dumka, Kiev, 264 p. (in Russian)

    Google Scholar 

  • Zaroogian GE (1979) Studies on the depuration of cadmium and copper by the American oyster Crassostrea virginica. Bull Environ Contam Toxicol 23(1):117–122. https://doi.org/10.1007/bf01769928

    Article  Google Scholar 

  • Zesenko AYa (1977) Izuchenie povedeniya i nakopleniya gidrobiontami razlichnykh fiziko-khimicheskikh form radioaktivnykh i stabil’nykh radionuklidov pervoi – vos’moi grupp Periodicheskoi sistemy elementov. In: Polikarpov GG, Risik NS (eds) Radiokhemoekologiya Chernogo morya. Naukova dumka, Kiev, pp 21–52. (in Russian)

    Google Scholar 

  • Zesenko AYa, Nazarov AB (1973) O nakoplenii toriya-234 morskimi organizmami. In: Radiokhemoekologiya vodnykh organizmov, vol 2. Zinatne, Riga, pp 274–280. (in Russian)

    Google Scholar 

  • Zlobin VS (1968) Dinamika nakopleniya radiostrontsiya nekotorymi burymi vodoroslyami i vliyanie solenosti morskoi vody na koeffitsienty nakopleniya. Okeanologiya 8(1):78–85 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Egorov, V. (2021). Biogeochemical Mechanisms of the Interaction of Living and Inert Matter with the Radioactive and Chemical Components of the Marine Environment. In: Theory of Radioisotopic and Chemical Homeostasis of Marine Ecosystems. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-030-80579-1_2

Download citation

Publish with us

Policies and ethics