Abstract
The frenetic growth of the need for computation performance and efficiency, along with the intrinsic limitations of the current main solutions, is pushing the scientific community towards unconventional, and sometimes even exotic, alternatives to the standard computing architectures. In this work we provide a panorama of the most relevant alternatives, both according and not to the von Neumann architecture, highlighting which of the classical challenges, such as energy efficiency and/or computational complexity, they are trying to tackle. We focus on the alternatives based on networks of weakly coupled oscillators. This unconventional approach, already introduced by Goto and von Neumann in the 1950s, is recently regaining interest with potential applications to both von Neumann and non-von Neumann type of computing. In this contribution, we present a general framework based on the phase equation derived from the description of nonlinear weakly coupled oscillators, especially useful for computing applications. We then use this formalism to design and prove the working principle and stability assessment of Boolean gates such as NOT and MAJORITY, that can be potentially employed as building blocks for both von Neumann and non-von Neumann architectures.
This is a preview of subscription content, access via your institution.
Buying options









References
J.J.P. Eckert, J.W. Mauchly, Electronic numerical integrator and computer, US patent # US757158A (1947)
H.H. Goldstine, A. Goldstine, The electronic numerical integrator and computer (ENIAC). Math. Tables Other Aids Comput. 2, 97 (1946)
J. von Neumann, First draft of a report on the EDVAC. Ann. History Comput. IEEE 15(4), 27–75 (1993)
J.L. Hennessy, D.A. Patterson, Computer Architecture, Sixth Edition: A Quantitative Approach (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2017)
S. Arora, B. Barak, Computational Complexity: A Modern Approach (Cambridge University Press, Cambridge, 2009)
J. Backus, Can programming be liberated from the von Neumann style?: A functional style and its algebra of programs. Commun. ACM 21, 613–641 (1978). (Aug.)
J.L. Hennessy, D.A. Patterson, A new golden age for computer architecture. Commun ACM 62, 48–60 (2019)
M. Horowitz, 1.1 computing’s energy problem (and what we can do about it), in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2014)
J. Nickolls, W.J. Dally, The GPU computing era. IEEE Micro 30, 56–69 (2010)
D. Singh, C.K. Reddy, A survey on platforms for big data analytics. J. Big Data 2 (2014)
Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015). (May)
I. Goodfellow, J. Bengio, A. Courville, F. Bach, Deep Learning (MIT Press Ltd, 2016)
V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, Z. Zhang, Hardware for machine learning: Challenges and opportunities, in 2017 IEEE Custom Integrated Circuits Conference (CICC) (IEEE, 2017)
V. Sze, Y.-H. Chen, T.-J. Yang, J.S. Emer, Efficient processing of deep neural networks: A tutorial and survey. Proc. IEEE 105, 2295–2329 (2017)
N.P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. luc Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, D.H. Yoon, “In-datacenter performance analysis of a tensor processing unit, in Proceedings of the 44th Annual International Symposium on Computer Architecture (ACM, 2017)
N. Jouppi, C. Young, N. Patil, D. Patterson, Motivation for and evaluation of the first tensor processing unit. IEEE Micro 38, 10–19 (2018)
C. Li, D. Belkin, Y. Li, P. Yan, M. Hu, N. Ge, H. Jiang, E. Montgomery, P. Lin, Z. Wang, W. Song, J.P. Strachan, M. Barnell, Q. Wu, R. S. Williams, J.J. Yang, Q. Xia, Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nat. Commun. 9 (2018)
Q. Wang, X. Wang, S.H. Lee, F.-H. Meng, W.D. Lu, A deep neural network accelerator based on tiled RRAM architecture, in 2019 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2019)
S.H. Lee, X. Zhu, W.D. Lu, Nanoscale resistive switching devices for memory and computing applications. Nano Res. 13, 1228–1243 (2020)
P. Benioff, The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by turing machines. J. Stat. Phys. 22, 563–591 (1980)
R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)
Y. Manin, Computable and Uncomputable (in Russian) (Sovetskoye Radio, Moscow, 1980)
M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge Series on information and the Natural Sciences, Cambridge University Press, 10th Aniversary ed., 2010)
P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in 1994 Proceedings of 35th Annual Symposium on Foundations of Computer Science (1994), pp. 124–134
M. Dyakonov, When will useful quantum computers be constructed? Not in the foreseeable future, this physicist argues. here’s why: The case against: Quantum computing. IEEE Spectrum 56, 24–29 (2019). (Mar)
S. Yu, Neuro-inspired computing with emerging nonvolatile memorys. Proc. IEEE 106, 260–285 (2018)
G.W. Burr, R.M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Virwani, M. Ishii, P. Narayanan, A. Fumarola, L.L. Sanches, I. Boybat, M.L. Gallo, K. Moon, J. Woo, H. Hwang, Y. Leblebici, Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124 (2016)
S.B. Furber, F. Galluppi, S. Temple, L.A. Plana, The SpiNNaker project. Proc. IEEE 102, 652–665 (2014)
M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S.H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y.-H. Weng, A. Wild, Y. Yang, H. Wang, Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82–99 (2018)
I. Boybat, M.L. Gallo, S.R. Nandakumar, T. Moraitis, T. Parnell, T. Tuma, B. Rajendran, Y. Leblebici, A. Sebastian, E. Eleftheriou, Neuromorphic computing with multi-memristive synapses. Nat. Commun. 9 (2018)
A. Tavanaei, M. Ghodrati, S.R. Kheradpisheh, T. Masquelier, A. Maida, Deep learning in spiking neural networks. Neural Netw. 111, 47–63 (2019)
G. Singh, L. Chelini, S. Corda, A.J. Awan, S. Stuijk, R. Jordans, H. Corporaal, A.-J. Boonstra, Near-memory computing: Past, present, and future. Microprocessors Microsyst. 71, 102868 (2019)
D. Ielmini, H.-S.P. Wong, In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018)
F.L. Traversa, F. Bonani, Y.V. Pershin, M. Di Ventra, Dynamic computing random access memory. Nanotechnology 25, 285201 (2014)
Y.V. Pershin, F.L. Traversa, M. Di Ventra, Memcomputing with membrane memcapacitive systems. Nanotechnology 26, 225201 (2015)
A. Sebastian, M.L. Gallo, R. Khaddam-Aljameh, E. Eleftheriou, Memory devices and applications for in-memory computing. Nature Nanotechnol. 15, 529–544 (2020)
F.L. Traversa, M. Di Ventra, Universal memcomputing machines. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2702 (2015)
M. Di Ventra, F.L. Traversa, Perspective: Memcomputing: Leveraging memory and physics to compute efficiently. J. Appl. Phys. 123, 180901 (2018)
Y.R. Pei, F.L. Traversa, M.D. Ventra, On the universality of memcomputing machines. IEEE Trans. Neural Netw. Learn. Syst. 30, 1610–1620 (2019)
F.L. Traversa, C. Ramella, F. Bonani, M. Di Ventra, Memcomputing NP-complete problems in polynomial time using polynomial resources and collective states. Sci. Adv. 1(6), e1500031 (2015)
F.L. Traversa, M. Di Ventra, Polynomial-time solution of prime factorization and np-complete problems with digital memcomputing machines. Chaos: Interdiscip. J. Nonlinear Sci. 27, 023107 (2017)
F.L. Traversa, M. Di Ventra, Memcomputing integer linear programming (2018). arXiv:1808.09999
H. Manukian, F.L. Traversa, M. Di Ventra, “Memcomputing numerical inversion with self-organizing logic gates. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–6 (2017)
M. Di Ventra, F.L. Traversa, Absence of chaos in digital memcomputing machines with solutions. Phys. Lett. A 381, 3255 (2017)
M. Di Ventra, F.L. Traversa, Absence of periodic orbits in digital memcomputing machines with solutions. Chaos: Interdiscipl. J. Nonlinear Sci. 27, 101101 (2017)
F.L. Traversa, P. Cicotti, F. Sheldon, M. Di Ventra, Evidence of exponential speed-up in the solution of hard optimization problems. Complexity 2018, 1–13 (2018)
F. Sheldon, P. Cicotti, F.L. Traversa, M.D. Ventra, Stress-testing memcomputing on hard combinatorial optimization problems. IEEE Trans. Neural Netw. Learn. Syst. 31(6), 2222–2226 (2020)
F.L. Traversa, Aircraft loading optimization: Memcomputing the 5th airbus problem (2019). arXiv:1903.08189
F. Sheldon, F.L. Traversa, M.D. Ventra, Taming a nonconvex landscape with dynamical long-range order: Memcomputing ising benchmarks. Phys. Rev. E 100 (2019)
H. Manukian, F.L. Traversa, M. Di Ventra, Accelerating deep learning with memcomputing. Neural Netw. 110, 1–7 (2019)
K.Y. Camsari, R. Faria, B.M. Sutton, S. Datta, Stochastic p -bits for invertible logic. Phys. Rev. X 7 (2017)
K.Y. Camsari, S. Salahuddin, S. Datta, Implementing p-bits with embedded MTJ. IEEE Electron Device Lett. 38, 1767–1770 (2017)
F. Caravelli, C. Nisoli, Logical gates embedding in artificial spin ice. New J. Phys. 22, 103052 (2020)
E. Goto, New parametron circuit element using nonlinear reactance, in KDD Kenyku Shiryo (1954)
E. Goto, The parametron, a digital computing element which utilizes parametric oscillation. Proc. IRE 47, 1304–1316 (1959)
J. von Neumann, Non-linear capacitance or inductance switching, amplifying, and memory organs. patent # US2815488A (1954)
R. Wigington, A new concept in computing. Proc. IRE 47, 516–523 (1959)
S. Farzeen, G. Ren, C. Chen, An ultra-low power ring oscillator for passive UHF RFID transponders, in 2010 53rd IEEE International Midwest Symposium on Circuits and Systems (IEEE, 2010)
D. Houssameddine, U. Ebels, B. Delaët, B. Rodmacq, I. Firastrau, F. Ponthenier, M. Brunet, C. Thirion, J.-P. Michel, L. Prejbeanu-Buda, M.-C. Cyrille, O. Redon, B. Dieny, Spin-torque oscillator using a perpendicular polarizer and a planar free layer. Nat. Mater. 6, 447–453 (2007)
S. Kobayashi, T. Kimura, Injection locking characteristics of an AlGaAs semiconductor laser. IEEE J. Quantum Electron. 16, 915–917 (1980)
X.L. Feng, C.J. White, A. Hajimiri, M.L. Roukes, A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator. Nat. Nanotechnol. 3, 342–346 (2008)
M.B. Elowitz, S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)
K.M. Hannay, D.B. Forger, V. Booth, Macroscopic models for networks of coupled biological oscillators. Sci. Adv. 4, e1701047 (2018)
K. Matsuoka, Analysis of a neural oscillator. Biol. Cybern. 104, 297–304 (2011)
F.L. Traversa, Y.V. Pershin, M. Di Ventra, Memory models of adaptive behavior. IEEE Trans. Neural Netw. Learn. Syst. 24, 1437–1448 (2013)
A.T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)
J. Roychowdhury, Boolean computation using self-sustaining nonlinear oscillators. Proc. IEEE 103, 1958–1969 (2015)
A. Raychowdhury, A. Parihar, G.H. Smith, V. Narayanan, G. Csaba, M. Jerry, W. Porod, S. Datta, Computing with networks of oscillatory dynamical systems. Proc. IEEE 107, 73–89 (2019)
M. Bonnin, F. Bonani, F.L. Traversa, Logic gates implementation with coupled oscillators, in 2018 IEEE Workshop on Complexity in Engineering (COMPENG) (IEEE, 2018)
G. Csaba, A. Raychowdhury, S. Datta, W. Porod, Computing with coupled oscillators: Theory, devices, and applications, in 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2018)
T. Wang, J. Roychowdhury, Oscillator-based ising machine (2017). arXiv:1709.08102
J. Chou, S. Bramhavar, S. Ghosh, W. Herzog, Analog coupled oscillator based weighted ising machine. Sci. Rep. 9 (2019)
A. Mallick, M.K. Bashar, D.S. Truesdell, B.H. Calhoun, S. Joshi, N. Shukla, Using synchronized oscillators to compute the maximum independent set. Nat. Commun. 11 (2020)
G. Csaba, W. Porod, Coupled oscillators for computing: A review and perspective. Appl. Phys. Rev. 7, 011302 (2020)
K. Chen, D. Wang, A dynamically coupled neural oscillator network for image segmentation. Neural Netw. 15, 423–439 (2002)
N. Shukla, A. Parihar, M. Cotter, M. Barth, X. Li, N. Chandramoorthy, H. Paik, D.G. Schlom, V. Narayanan, A. Raychowdhury, S. Datta, Pairwise coupled hybrid vanadium dioxide-MOSFET (HVFET) oscillators for non-boolean associative computing, in 2014 IEEE International Electron Devices Meeting (IEEE, 2014)
L.O. Chua, C.A. Desoer, E.S. Kuh, Linear and Nonlinear Circuits (McGraw-Hill, New York, 1987)
L. Perko, Differential Equations and Dynamical Systems (Springer, New York, 2013)
R. Albert, A.-L. Barabási, Statistical mechanics of complex networks. Rev. Modern Phys. 74, 47–97 (2002)
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D. Hwang, Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006)
F.C. Hoppensteadt, E.M. Izhikevich, Oscillatory neurocomputers with dynamic connectivity. Phys. Rev. Lett. 82, 2983–2986 (1999)
M. Itoh, L.O. Chua, Star cellular neural networks for associative and dynamic memories. Int. J. Bifurcation Chaos 14, 1725–1772 (2004)
J. Guckenheimer, Isochrons and phaseless sets. J. Math. Biol. 1, 259–273 (1975)
M. Bonnin, F. Corinto, M. Gilli, Phase space decomposition for phase noise and synchronization analysis of planar nonlinear oscillators. IEEE Trans. Circuits Syst. II: Express Briefs 59, 638–642 (2012)
M. Bonnin, F. Corinto, Phase noise and noise induced frequency shift in stochastic nonlinear oscillators. IEEE Trans. Circuits Syst. I: Regular Papers 60, 2104–2115 (2013)
E. Brown, J. Moehlis, P. Holmes, On the phase reduction and response dynamics of neural oscillator populations. Neural Comput. 16, 673–715 (2004)
B. Ermentrout, Type I membranes, phase resetting curves, and synchrony. Neural Comput. 8, 979–1001 (1996)
Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin Heidelberg, 2011)
H. Nakao, Phase reduction approach to synchronisation of nonlinear oscillators. Contemporary Phys. 57, 188–214 (2015)
J.-N. Teramae, H. Nakao, G.B. Ermentrout, Stochastic phase reduction for a general class of noisy limit cycle oscillators. Phys. Rev. Lett. 102 (2009)
K.C. Wedgwood, K.K. Lin, R. Thul, S. Coombes, Phase-amplitude descriptions of neural oscillator models. J. Math. Neurosci. 3(1), 2 (2013)
D. Wilson, J. Moehlis, Isostable reduction of periodic orbits. Phys. Rev. E 94(5), 052213 (2016)
K. Yoshimura, K. Arai, Phase reduction of stochastic limit cycle oscillators. Phys. Rev. Lett. 101 (2008)
A. Guillamon, G. Huguet, A computational and geometric approach to phase resetting curves and surfaces. SIAM J. Appl. Dyn. Syst. 8, 1005–1042 (2009)
G. Huguet, R. de la Llave, Computation of limit cycles and their isochrons: Fast algorithms and their convergence. SIAM J. Appl. Dyn. Syst. 12, 1763–1802 (2013)
E. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (MIT Press, Cambridge, Mass, 2007)
A. Mauroy and I. Mezić, On the use of Fourier averages to compute the global isochrons of (quasi)periodic dynamics. Chaos: Interdiscip. J. Nonlinear Sci. 22, 033112 (2012)
A. Mauroy, I. Mezić, J. Moehlis, Isostables, isochrons, and Koopman spectrum for the action–angle representation of stable fixed point dynamics. Physica D: Nonlinear Phenomena 261, 19–30 (2013)
D. Wilson, B. Ermentrout, Phase models beyond weak coupling. Phys. Rev. Lett. 123(16), 164101 (2019)
D. Wilson, B. Ermentrout, Augmented phase reduction of (not so) weakly perturbed coupled oscillators. SIAM Rev. 61(2), 277–315 (2019)
D. Aronson, G. Ermentrout, N. Kopell, Amplitude response of coupled oscillators. Physica D: Nonlinear Phenomena 41, 403–449 (1990)
M. Bonnin, F. Corinto, Influence of noise on the phase and amplitude of second-order oscillators. IEEE Trans. Circuits Syst. II: Express Briefs 61(3), 158–162 (2014)
M. Bonnin, F. Corinto, V. Lanza, A mathematical framework for amplitude and phase noise analysis of coupled oscillators. Euro. Phys. J. Special Top. 225, 171–186 (2016)
M. Bonnin, Amplitude and phase dynamics of noisy oscillators. Int. J. Circuit Theory Appl. 45, 636–659 (2016)
M. Bonnin, Phase oscillator model for noisy oscillators. Euro. Phys. J. Special Top. 226, 3227–3237 (2017)
M. Bonnin, F.L. Traversa, F. Bonani, Colored noise in oscillators. phase-amplitude analysis and a method to avoid the Itô-Stratonovich dilemma. IEEE Trans. Circuits Syst. I: Regular Papers 66, 3917–3927 (2019)
A. Demir, A. Mehrotra, J. Roychowdhury, Noise in oscillators: A review of state space decomposition approaches. IEEE Trans. Circuits Syst. I: Fund. Theory Appl. 47, 655–674 (2000)
F.X. Kaertner, Analysis of white and f\(^{-\alpha }\) noise in oscillators. Int. J. Circuit Theory Appl. 18, 485–519 (1990)
F.L. Traversa, M. Bonnin, F. Corinto, F. Bonani, Noise in oscillators: A review of state space decomposition approaches. J. Comput. Electroni. 14, 51–61 (2014)
D. Wilson, Phase-amplitude reduction far beyond the weakly perturbed paradigm. Phys. Rev. E 101(2), 022220 (2020)
D. Wilson, A data-driven phase and isostable reduced modeling framework for oscillatory dynamical systems. Chaos: Interdiscip. J. Nonlinear Sci. 30(1), 013121 (2020)
T. Djurhuus, V. Krozer, J. Vidkjær, T.K. Johansen, Oscillator phase noise: A geometrical approach. IEEE Trans. Circuits Syst. I: Regular Papers 56(7), 1373–1382 (2008)
T. Djurhuus, V. Krozer, A study of amplitude-to-phase noise conversion in planar oscillators. Int. J. Circuit Theory Appl. (2020)
F.L. Traversa, F. Bonani, Frequency-domain evaluation of the adjoint Floquet eigenvectors for oscillator noise characterisation. IET Circuits, Dev. Syst. 5(1), 46 (2011)
F.L. Traversa, F. Bonani, Improved harmonic balance implementation of Floquet analysis for nonlinear circuit simulation. AEU - Int. J. Electron. Commun. 66, 357–363 (2012)
F.L. Traversa, F. Bonani, Selective determination of Floquet quantities for the efficient assessment of limit cycle stability and oscillator noise. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 32, 313–317 (2013)
W. Wernick, Complete sets of logical functions. Trans. Am. Math. Soc. 51(1), 117–132 (1942)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Bonnin, M., Traversa, F.L., Bonani, F. (2022). Coupled Oscillator Networks for von Neumann and Non-von Neumann Computing. In: Virvou, M., Tsihrintzis, G.A., Tsoukalas, L.H., Jain, L.C. (eds) Advances in Artificial Intelligence-based Technologies. Learning and Analytics in Intelligent Systems, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-80571-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-80571-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-80570-8
Online ISBN: 978-3-030-80571-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)