Skip to main content

Viscoelastic Solids and Fluids

  • Chapter
  • First Online:
Thermodynamics of Materials with Memory

Abstract

We now consider special cases of the constitutive relations (7.1.13), namely linear viscoelastic solids and fluids with linear memory under isothermal conditions in the present chapter and an approximate version of rigid heat conductors in Chap. 9. Some of the formulas are similar to those derived in the general case, and detailed proofs are omitted or a different version is given. Other formulas are specific to completely linear materials , for example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The quantity I t was originally defined in the literature as the negative of the functional used here. This change in sign, which is consistent with Sect. 7.4, is introduced here and later so that its relationship with the stress functional is a little more precise.

  2. 2.

    Note that the tensor \(\mathbb {K}\) here is quite different from the quantity used briefly in the early part of Sect. 7.1.

References

  1. G. Amendola and M. Fabrizio, Maximum recoverable work for incompressible viscoelastic fluids and application to a discrete spectrum model, Diff. Int. Eq.20 (4) (2007), 445–466.

    MathSciNet  MATH  Google Scholar 

  2. G. Amendola, M. Fabrizio, J.M. Golden and B. Lazzari, Free energies and asymptotic behavior for incompressible viscoelastic fluids, Applied Analysis88 (2009), 789–805.

    Article  Google Scholar 

  3. C. Banfi, Su una nuova impostazione per l’analisi dei sistemi ereditari, Ann. Univ. Ferrara23 (7) (1977), 29–38.

    MathSciNet  MATH  Google Scholar 

  4. R. Bowen and P.J. Chen, Thermodynamic restrictions on the initial slope of the stress relaxation function, Arch. Rational Mech. Anal.51 (1973), 278–284.

    Article  MathSciNet  Google Scholar 

  5. A. Bozza and G. Gentili, Inversion and quasi-static problems in linear viscoelasticity, Meccanica30 (1995), 321–335.

    Article  MathSciNet  Google Scholar 

  6. R.M. Christensen, Theory of Viscoelasticity: An Introduction, 2nd edn, Academic Press, New York, 1982.

    Google Scholar 

  7. B.D. Coleman, Thermodynamics of materials with fading memory, Arch. Rational Mech. Anal.13 (1964), 1–46.

    Article  Google Scholar 

  8. B.D. Coleman, On thermodynamics, strain impulses and viscoelasticity, Arch. Rational Mech. Anal.17 (1964), 230–254.

    Article  MathSciNet  Google Scholar 

  9. B.D. Coleman and V.J. Mizel, Norms and semi-groups in the theory of fading memory, Arch. Rational Mech. Anal.23 (1966), 87–123.

    Article  MathSciNet  Google Scholar 

  10. B.D. Coleman and W. Noll, Foundations of linear viscoelasticity, Rev. Mod. Phys.33 (1961), 239–249.

    Article  MathSciNet  Google Scholar 

  11. B.D. Coleman and D.R. Owen, A Mathematical foundation for thermodynamics, Arch. Rational Mech. Anal.54 (1974), 1–104.

    Article  MathSciNet  Google Scholar 

  12. W.A. Day, Restrictions on relaxation functions in linear viscoelasticity, Quart. J. Mech. Appl. Math.24 (1971), 487–497.

    Article  MathSciNet  Google Scholar 

  13. G. Del Piero and L. Deseri, On the concepts of state and free energy in linear viscoelasticity, Arch. Rational Mech. Anal.138 (1997), 1–35.

    Article  MathSciNet  Google Scholar 

  14. L. Deseri, M. Fabrizio and J.M. Golden, On the concept of a minimal state in viscoelasticity: new free energies and applications to PDEs, Arch. Rational Mech. Anal.181 (1) (2006), 43–96.

    Article  MathSciNet  Google Scholar 

  15. M. Fabrizio, G. Gentili and J.M. Golden, The minimum free energy for a class of compressible viscoelastic fluids, Diff. Int. Eq.7 (2002), 319–342.

    MathSciNet  MATH  Google Scholar 

  16. M. Fabrizio and C. Giorgi, Sulla termodinamica dei materiali semplici, Boll. Un. Mat. Ital.5B (6) (1986), 441–464.

    Google Scholar 

  17. M. Fabrizio, C. Giorgi and A. Morro, Free energies and dissipation properties for systems with memory, Arch. Rational Mech. Anal.125 (1994), 341–373.

    Article  MathSciNet  Google Scholar 

  18. M. Fabrizio, C. Giorgi and A. Morro, Internal dissipation, relaxation property and free energy in materials with fading memory, J. Elasticity40 (1995), 107–122.

    Article  MathSciNet  Google Scholar 

  19. M. Fabrizio and B. Lazzari, On asymptotic stability for linear viscoelastic fluids, Diff. Int. Eq.6 (3) (1993), 491–504.

    MathSciNet  MATH  Google Scholar 

  20. M. Fabrizio and A. Morro, Thermodynamic restrictions on relaxation functions in linear viscoelasticity, Mech. Res. Comm.12 (1985), 101–105.

    Article  Google Scholar 

  21. M. Fabrizio and A. Morro, Viscoelastic relaxation functions compatible with thermodynamics, J. Elasticity19 (1988), 63–75.

    Article  MathSciNet  Google Scholar 

  22. M. Fabrizio and A. Morro, Equivalent histories, minimal states and initial value problem in viscoelasticity, Math. Meth. Appl. Sci.28 (2005), 233–251.

    Article  MathSciNet  Google Scholar 

  23. G. Gentili, Maximum recoverable work, minimum free energy and state space in linear viscoelasticity, Quart. Appl. Math.60 (2002), 153–182.

    Article  MathSciNet  Google Scholar 

  24. J.M. Golden, Free energies in the frequency domain: the scalar case, Quart. Appl. Math.58 (2000), 127–150.

    Article  MathSciNet  Google Scholar 

  25. J.M. Golden and G.A.C. Graham, Boundary Value Problems in Linear Viscoelasticity, Springer, Berlin, 1988.

    Book  Google Scholar 

  26. D. Graffi, Sui problemi dell’ereditarietà lineare, Nuovo Cimento A 5 (1928), 53–71.

    Google Scholar 

  27. D. Graffi and M. Fabrizio, Sulla nozione di stato materiali viscoelastici di tipo “rate”, Atti Accad. Naz. Lincei83 (1990), 201–208.

    Google Scholar 

  28. M.J. Leitman and G.M.C. Fisher, The linear theory of viscoelasticity, in Handbuch der Physik, vol. VIa/3, C. Truesdell ed., Springer-Verlag, Berlin, 1973.

    Google Scholar 

  29. A. Morro, Negative semidefiniteness of the viscoelastic attenuation tensor via the Clausius–Duhem inequality, Arch. Mech.37 (1985), 255–259.

    MathSciNet  MATH  Google Scholar 

  30. J. Serrin, An outline on thermodynamical structure, in New Perspective in Thermodynamics, ed. Serrin J., Springer, Berlin, 1986.

    Google Scholar 

  31. C. Truesdell, The meaning of viscometry in fluid dynamics, Ann. Rev. Fluid Mech.6 (1974), 111–146.

    Article  Google Scholar 

  32. C. Truesdell and W. Noll, The nonlinear Field Theories of Mechanics, in Handbuch der Physik, vol. III/3, Flügge ed., Springer, Berlin, 1964; also Ed. S. Antman, Springer, Berlin, 2004.

    Google Scholar 

  33. N.S. Wilkes, Thermodynamic restrictions on viscoelastic materials, Quart. J. Mech. Appl. Math.30 (1977), 209–221.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amendola, G., Fabrizio, M., Golden, J. (2021). Viscoelastic Solids and Fluids. In: Thermodynamics of Materials with Memory. Springer, Cham. https://doi.org/10.1007/978-3-030-80534-0_8

Download citation

Publish with us

Policies and ethics