Algebraic Harmony in Genomic DNA-Texts and Long-Range Coherence in Biological Systems

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1403)


The paper is devoted to actual problems of development of quantum biology. Connections of the hyperbolic rules of cooperative oligomer organization of DNA-texts of eukaryotic and prokaryotic genomes with known Fröhlich’s theory of quantum long-range coherence in biological systems are considered for the first time. These new hyperbolic rules in long helical DNA, which are related with the harmonic progression 1, 1/2,…, 1/n, allow discussion of a connection of Fröhlich’s theory with fractal-like phenomena of the cooperative organization of long DNA-texts and also with helical antennas, which emit and absorb electromagnetic waves of circular polarization. The harmonic progression is related to standing waves in resonators and, in particular, to harmonics in music. It is noted that the algebra-harmonic features of genomes remind the well-known ancient practice of meditations using music and 4-sector mandalas. The described materials develop ideas of quantum biology and can lead to new ideas in theoretical and application areas, including problems of artificial intelligence and in-depth study of genetic phenomena for medical and biotechnological tasks.


Genomes DNA Hyperbolic rules Harmonic progression Helical antennas Fröhlich’s theory Quantum biology 



The author is grateful to his colleagues M. He, Z. Hu, I. Stepanyan, V. Svirin, and G. Tolokonnikov for research assistance.


  1. 1.
    Petoukhov, S.V.: Hyperbolic rules of the cooperative organization of eukaryotic and prokaryotic genomes. Biosystems 198, 104273 (2020)CrossRefGoogle Scholar
  2. 2.
    Petoukhov, S.V.: Modeling inherited physiological structures based on hyperbolic numbers. BioSystems (2020). Scholar
  3. 3.
    Petoukhov, S.V.: Hyperbolic rules of the oligomer cooperative organization of eukaryotic and prokaryotic genomes. Preprints 2020, 2020050471 (2020).,
  4. 4.
    Petoukhov, S.V.: Genomes symmetries and algebraic harmony in living bodies. Symmetry: Cult. Sci. 31(2), 222–223 (2020). Scholar
  5. 5.
    Petoukhov, S.V.: Nucleotide epi-chains and new nucleotide probability rules in long DNA sequences. Preprints 2019, 2019040011 (2019).,
  6. 6.
    Blank, M., Goodman, R.: DNA is a fractal antenna in electromagnetic fields. Int. J. Radiat. Biol. 87(4), 409–415 (2011). Scholar
  7. 7.
    Foster, K.R.: Comments on DNA as a fractal antenna. Int. J. Radiat. Biol. 87(12), 1208–1209 (2011).
  8. 8.
    Kraus, J.D., Marhefka, R.J.: Antennas: For All Applications, 3rd edn. McGraw-Hill Higher Education, New York (2002)Google Scholar
  9. 9.
    Darvas, G.: Symmetry. Birkhauser, Basel (2007)zbMATHGoogle Scholar
  10. 10.
    Kizel, V.A.: Optical activity and dissymmetry in living systems. Soviet Phys. Uspekhi 23(6), 277–295 (1980)CrossRefGoogle Scholar
  11. 11.
    Zabeo, D., et al.: A lumenal interrupted helix in human sperm tail microtubules. Sci. Rep. 8(1), 2727 (2018). PMID: 29426884, PMCID: PMC5807425CrossRefGoogle Scholar
  12. 12.
    Potapov, A.A.: Fractals in radiophysics and radar. Elements of the theory of fractals: a review. J. Commun. Technol. Electron. 45(11), 1157–1164 (2000)Google Scholar
  13. 13.
    Shnoll, S.E.: Physical-Chemical Factors of Biological Evolution. Nauka, Moscow (1989). (in Russian)Google Scholar
  14. 14.
    Khan, R., Debnath, R.: Human distraction detection from video stream using artificial emotional intelligence. IJIGSP 12(2), 19–29 (2020)CrossRefGoogle Scholar
  15. 15.
    Erwin, E., Ningsih, D.R.: Improving retinal image quality using the contrast stretching, histogram equalization, and CLAHE methods with median filters. IJIGSP 12(2), 30–41 (2020)CrossRefGoogle Scholar
  16. 16.
    Mostakim, Md.N., Mahmud, S., Jewel, Md.K.H., Rahman, Md.K., Ali, Md.S.: Design and development of an intelligent home with automated environmental control. IJIGSP 12(4), 1–14 (2020)Google Scholar
  17. 17.
    Arora, N., Ashok, A., Tiwari, S.: Efficient image retrieval through hybrid feature set and neural network. IJIGSP 11(1), 44–53 (2019)CrossRefGoogle Scholar
  18. 18.
    Anami, B.S., Naveen, N.M., Surendra, P.: Automated paddy variety recognition from color-related plant agro-morphological characteristics. IJIGSP 11(1), 12–22 (2019)CrossRefGoogle Scholar
  19. 19.
    Ahmed, M., Akhand, M.A.H., Rahman, M.M.H.: Recognizing Bangla handwritten numeral utilizing deep long short term memory. IJIGSP 11(1), 23–32 (2019)CrossRefGoogle Scholar
  20. 20.
    Fröhlich, H.: Long range coherence and the action of enzymes. Nature 228, 1093 (1970)CrossRefGoogle Scholar
  21. 21.
    Fröhlich, H.: Introduction. Theoretical physics and biology. In: Fröhlich, H. (ed.) Biological Coherence and Response to External Stimuli, pp. 3–24. Springer, Heidelberg (1988)., ISBN 978-0-387-18739-6
  22. 22.
    Fröhlich, H., Kremer, F.: Coherent Excitations in Biological Systems. Springer, Heidelberg (1983). ISBN 978-3-642-69186-7CrossRefGoogle Scholar
  23. 23.
    Hyland, G.J.: Coherent GHz and THz excitations in active biosystems, and their implications. In: The Future of Medical Diagnostics? - Proceeding of Matra Marconi UK, Directorate of Science, Internal Report, Portsmouth, UK, pp. 14–27 (1998)Google Scholar
  24. 24.
    Lundholm, I.V., et al.: Terahertz radiation induces non-thermal structural changes, associated with Fröhlich condensation in a protein crystal. Struct. Dyn. 2, 054702 (2015)CrossRefGoogle Scholar
  25. 25.
    Penrose, R.: Shadows of the Mind: A Search for the Missing Science of Consciousness. Oxford University Press Inc., New York (1994). ISBN 0 19 853978 9zbMATHGoogle Scholar
  26. 26.
    Vasconcellos, A.R., Vannucchi, F.S., Mascarenhas, S., Luzzi, R.: Frohlich condensate: emergence of synergetic dissipative structures in information processing biological and condensed matter systems. Information 3(4), 601–620 (2012). Scholar
  27. 27.
    Hameroff, S.R.: Chi: a neural hologram? Am. J. Clin. Med. 2(2), 163–170 (1974)CrossRefGoogle Scholar
  28. 28.
    Hameroff, S.R.: Ultimate Computing. Biomolecular Consciousness and Nano-Technology. North-Holland, Amsterdam (1987)Google Scholar
  29. 29.
    Fröhlich, F.: Genetic code as Language. In: Fröhlich, H. (ed.) Biological Coherence and Response to External Stimuli, pp. 192–204. Springer, Heidelberg (1988)., ISBN 978-0-387-18739-6
  30. 30.
    Holland, J.M.: Studies in Structure. MacMillan Press, London (1972)CrossRefGoogle Scholar
  31. 31.
    Petoukhov, S.V.: Connections between long genetic and literary texts. The quantum-algorithmic modelling. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) ICCSEEA 2019. AISC, vol. 938, pp. 534–543. Springer, Cham (2020). Scholar
  32. 32.
    Rieper, E., Anders, J., Vedral, V.: Quantum entanglement between the electron clouds of nucleic acids in DNA (2011). arXiv:1006.4053v2
  33. 33.
    Petoukhov, S.V.: Genetic code and the ancient Chinese “Book of Changes”. Symmetry: Cult. Sci. 10(3–4), 211–226 (1999)MathSciNetGoogle Scholar
  34. 34.
    Petoukhov, S.V.: Matrix Genetics, Algebras of the Genetic Code, Noise-Immunity. RChD, Moscow (2008). ISBN 978-5-93972-643-6. (in Russian)Google Scholar
  35. 35.
    Petoukhov, S.V., He, M.: Symmetrical Analysis Techniques for Genetic Systems and Bioinformatics: Advanced Patterns and Applications. IGI Global, Hershey (2009)Google Scholar
  36. 36.
    Hu, Z.B., Petoukhov, S.V., Petukhova, E.S.: I-Ching, dyadic groups of binary numbers and the geno-logic coding in living bodies. Prog. Biophys. Mol. Biol. 131, 354–368 (2017). Scholar
  37. 37.
    McFadden, J., Al-Khalili, J.: The origins of quantum biology. Proc. R. Soc. A 474(2220), 1–13 (2018). Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Mechanical Engineering Research InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State Tchaikovsky ConservatoryMoscowRussia

Personalised recommendations