Skip to main content

Nutritional Considerations in Children

  • Chapter
  • First Online:
Nutrition and Oral Health

Abstract

Children and adolescents have high nutritional requirements relative to their size in order to meet demands for growth, development and physical activity. Dietary patterns and habits established early in life will influence health in the short and longer term. Good nutritional status and good oral health are interconnected; good nutrition is essential for optimal growth, development and maintenance of all tissues and organs in the body, including the oral cavity. Poor or inadequate dietary habits can negatively impact oral health whilst oral health problems including dental caries, infection, dental erosion and soft-tissue lesions can result in inadequate nutrition which may impact weight gain and ultimately growth. This chapter describes the development of the oral anatomy and feeding skills, the impact of solid food introduction and the importance of nutrition for growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monteiro POA, Victora CG. Rapid growth in infancy and childhood and obesity in later life - a systematic review. Obes Rev. 2005;6(2):143–54. https://doi.org/10.1111/j.1467-789X.2005.00183.x.

    Article  PubMed  Google Scholar 

  2. Druet C, Stettler N, Sharp S, et al. Prediction of childhood obesity by infancy weight gain: an individual-level meta-analysis. Paediatr Perinat Epidemiol. 2012;26(1):19–2. https://doi.org/10.1111/j.1365-3016.2011.01213.x.

    Article  PubMed  Google Scholar 

  3. Koletzko B, Godfrey KM, Poston L, et al. Nutrition during pregnancy, lactation and early childhood and its implications for maternal and long-term child health: the early nutrition project recommendations. Ann Nutr Metab. 2019;74(2):93–106. https://doi.org/10.1159/000496471.

    Article  PubMed  Google Scholar 

  4. Nicklaus S, Demonteil L, Tournier C. 8 - Modifying the texture of foods for infants and young children. In: Modifying food texture: sensory analysis, consumer requirements and preferences, vol. 2. Amsterdam: Elsevier; 2015. https://doi.org/10.1016/B978-1-78242-334-8.00008-0.

    Chapter  Google Scholar 

  5. Le Révérend BJD, Edelson LR, Loret C. Anatomical, functional, physiological and behavioural aspects of the development of mastication in early childhood. Br J Nutr. 2014;111(3):403–14. https://doi.org/10.1017/S0007114513002699.

    Article  PubMed  Google Scholar 

  6. Loret C, Walter M, Pineau N, Peyron MA, Hartmann C, Martin N. Physical and related sensory properties of a swallowable bolus. Physiol Behav. 2011;104(5):855–64. https://doi.org/10.1016/j.physbeh.2011.05.014.

    Article  PubMed  Google Scholar 

  7. Harshaw C. Alimentary epigenetics: a developmental psychobiological systems view of the perception of hunger, thirst and satiety. Dev Rev. 2008;28(4):541–69. https://doi.org/10.1016/j.dr.2008.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Carruth BR, Ziegler PJ, Gordon A, Hendricks K. Developmental milestones and self-feeding behaviors in infants and toddlers. J Am Diet Assoc. 2004;104:s51–6. https://doi.org/10.1016/j.jada.2003.10.019.

    Article  PubMed  Google Scholar 

  9. van den Engel-Hoek L, van Hulst KCM, van Gerven MHJC, van Haaften L, de Groot SAF. Development of oral motor behavior related to the skill assisted spoon feeding. Infant Behav Dev. 2014;37(2):187–91. https://doi.org/10.1016/j.infbeh.2014.01.008.

    Article  PubMed  Google Scholar 

  10. Wee MSM, Goh AT, Stieger M, Forde CG. Correlation of instrumental texture properties from textural profile analysis (TPA) with eating behaviours and macronutrient composition for a wide range of solid foods. Food Funct. 2018;9(10):5301–12. https://doi.org/10.1039/c8fo00791h.

    Article  PubMed  Google Scholar 

  11. Stokes JR, Boehm MW, Baier SK. Oral processing, texture and mouthfeel: from rheology to tribology and beyond. Curr Opin Colloid Interface Sci. 2013;18(4):349–59. https://doi.org/10.1016/j.cocis.2013.04.010.

    Article  Google Scholar 

  12. Green JR, Moore CA, Ruark JL, Rodda PR, Morvée WT, VanWitzenburg MJ. Development of chewing in children from 12 to 48 months: longitudinal study of EMG patterns. J Neurophysiol. 1997;77(5):2704–16. https://doi.org/10.1152/jn.1997.77.5.2704.

    Article  PubMed  Google Scholar 

  13. Matsuo K, Palmer JB. Anatomy and physiology of feeding and swallowing: normal and abnormal. Phys Med Rehabil Clin N Am. 2008;19(4):691–707. https://doi.org/10.1016/j.pmr.2008.06.001.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pires SC, ERJ G, Caramez Da Silva F. Influence of the duration of breastfeeding on quality of muscle function during mastication in preschoolers: a cohort study. BMC Public Health. 2012;12(1):934. https://doi.org/10.1186/1471-2458-12-934.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wilson EM, Green JR. The development of jaw motion for mastication. Early Hum Dev. 2009;85(5):303–11. https://doi.org/10.1016/j.earlhumdev.2008.12.003.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Barlow SM. Central pattern generation involved in oral and respiratory control for feeding in the term infant. Curr Opin Otolaryngol Head Neck Surg. 2009;17(3):187–93. https://doi.org/10.1097/MOO.0b013e32832b312a.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stolovitz P, Gisel EG. Circumoral movements in response to three different food textures in children 6 months to 2 years of age. Dysphagia. 1991;6(1):17–25. https://doi.org/10.1007/BF02503459.

    Article  PubMed  Google Scholar 

  18. Gisel EG. Effect of food texture on the development of chewing of children between six months and two years of age. Dev Med Child Neurol. 1991;33(1):69–79. https://doi.org/10.1111/j.1469-8749.1991.tb14786.x.

    Article  PubMed  Google Scholar 

  19. Lundy B, Field T, Carraway K, et al. Food texture preferences in infants versus toddlers. Early Child Dev Care. 1998;146(1):69–85. https://doi.org/10.1080/0300443981460107.

    Article  Google Scholar 

  20. Stevenson RD, Allaire JH. The development of normal feeding and swallowing. Pediatr Clin North Am. 1991;38(6):1439–53. https://doi.org/10.1016/S0031-3955(16)38229-3.

    Article  PubMed  Google Scholar 

  21. Gisel EG. Chewing cycles in 2- to 8-year-old normal children: a developmental profile. Am J Occup Ther Off Publ Am Occup Ther Assoc. 1988;42(1):40–6. https://doi.org/10.5014/ajot.42.1.40.

    Article  Google Scholar 

  22. Castelo PM, Gavião MBD, Pereira LJ, Bonjardim LR. Maximal bite force, facial morphology and sucking habits in young children with functional posterior crossbite. J Appl Oral Sci. 2010;18(2):143–8. https://doi.org/10.1590/S1678-77572010000200008.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Castelo PM, Gavião MBD, Pereira LJ, Bonjardim LR. Masticatory muscle thickness, bite force, and occlusal contacts in young children with unilateral posterior crossbite. Eur J Orthod. 2007;29(2):149–56. https://doi.org/10.1093/ejo/cjl089.

    Article  PubMed  Google Scholar 

  24. Castelo PM, Pereira LJ, Bonjardim LR, Gavião MBD. Changes in bite force, masticatory muscle thickness, and facial morphology between primary and mixed dentition in preschool children with normal occlusion. Ann Anat. 2010;192(1):23–6. https://doi.org/10.1016/j.aanat.2009.10.002.

    Article  PubMed  Google Scholar 

  25. Carlsson GE. Bite force and chewing efficiency. Front Oral Physiol. 1974;1:265–92. https://doi.org/10.1159/000392726.

    Article  PubMed  Google Scholar 

  26. Demonteil L, Tournier C, Marduel A, Dusoulier M, Weenen H, Nicklaus S. Longitudinal study on acceptance of food textures between 6 and 18 months. Food Qual Prefer. 2019;71:54–65. https://doi.org/10.1016/j.foodqual.2018.05.010.

    Article  Google Scholar 

  27. Coulthard H, Harris G, Emmett P. Delayed introduction of lumpy foods to children during the complementary feeding period affects child’s food acceptance and feeding at 7 years of age. Matern Child Nutr. 2009;5(1):75–85. https://doi.org/10.1111/j.1740-8709.2008.00153.x.

    Article  PubMed  Google Scholar 

  28. Gavião MBD, Raymundo VG, Rentes AM. Masticatory performance and bite force in children with primary dentition. Braz Oral Res. 2007;21(2):146–52. https://doi.org/10.1590/s1806-83242007000200009.

    Article  PubMed  Google Scholar 

  29. Harris G, Mason S. Are there sensitive periods for food acceptance in infancy? Curr Nutr Rep. 2017;6(2):190–6. https://doi.org/10.1007/s13668-017-0203-0.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Northstone K, Emmett P, Nethersole F. The effect of age of introduction to lumpy solids on foods eaten and reported feeding difficulties at 6 and 15 months. J Hum Nutr Diet. 2001;14(1):43–54. https://doi.org/10.1046/j.1365-277X.2001.00264.x.

    Article  PubMed  Google Scholar 

  31. Mason SJ, Harris G, Blissett J. Tube feeding in infancy: Implications for the development of normal eating and drinking skills. Dysphagia. 2005;20(1):46–61. https://doi.org/10.1007/s00455-004-0025-2.

    Article  PubMed  Google Scholar 

  32. Schwartz JL, Niman CW, Gisel EG. Chewing cycles in 4- and 5-year-old normal children: an index of eating efficacy. Am J Occup Ther Off Publ Am Occup Ther Assoc. 1984;38(3):171–5. https://doi.org/10.5014/ajot.38.3.171.

    Article  Google Scholar 

  33. Blossfeld I, Collins A, Kiely M, Delahunty C. Texture preferences of 12-month-old infants and the role of early experiences. Food Qual Prefer. 2007;18(2):396–404. https://doi.org/10.1016/j.foodqual.2006.03.022.

    Article  Google Scholar 

  34. Araujo DS, Marquezin MCS, Barbosa TDS, Gavião MBD, Castelo PM. Evaluation of masticatory parameters in overweight and obese children. Eur J Orthod. 2016;38(4):393–7. https://doi.org/10.1093/ejo/cjv092.

    Article  PubMed  Google Scholar 

  35. Liu ZJ, Ikeda K, Harada S, Kasahara Y, Ito G. Functional properties of jaw and tongue muscles in rats fed a liquid diet after being weaned. J Dent Res. 1998;77(2):366–76. https://doi.org/10.1177/00220345980770020501.

    Article  PubMed  Google Scholar 

  36. Illingworth RS, Lister J. The critical or sensitive period, with special reference to certain feeding problems in infants and children. J Pediatr. 1964;65(6):839–48. https://doi.org/10.1016/s0022-3476(64)80006-8.

    Article  PubMed  Google Scholar 

  37. Werthmann J, Jansen A, Havermans R, Nederkoorn C, Kremers S, Roefs A. Bits and pieces: Food texture influences food acceptance in young children. Appetite. 2015;84:181–7. https://doi.org/10.1016/j.appet.2014.09.025.

    Article  PubMed  Google Scholar 

  38. Schwartz C, Vandenberghe-Descamps M, Sulmont-Rossé C, Tournier C, Feron G. Behavioral and physiological determinants of food choice and consumption at sensitive periods of the life span, a focus on infants and elderly. Innov Food Sci Emerg Technol. 2018;46:91–106. https://doi.org/10.1016/j.ifset.2017.09.008.

    Article  Google Scholar 

  39. Birch LL, Fisher JO. Development of eating behaviors among children and adolescents. Pediatrics. 1998;101:539–49.

    PubMed  Google Scholar 

  40. Forde CG, Fogel A, Mccrickerd K. Nurturing a healthy generation of children: research gaps and opportunities. Nestlé Nutrition Institute Workshop Series. Basel, Switzerland: Karger Publishers; 2019.

    Google Scholar 

  41. Fogel A, Goh AT, Fries LR, et al. A description of an ‘obesogenic’ eating style that promotes higher energy intake and is associated with greater adiposity in 4.5-year-old children: Results from the GUSTO cohort. Physiol Behav. 2017;176:107–16. https://doi.org/10.1016/j.physbeh.2017.02.013.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Stunkard AJ, Berkowitz RI, Stallings VA, Schoeller DA. Energy intake, not energy output, is a determinant of body size in infants. Am J Clin Nutr. 1999;69(3):524–30. https://doi.org/10.1093/ajcn/69.3.524.

    Article  PubMed  Google Scholar 

  43. Agras WS, Kraemer HC, Berkowitz RI, Hammer LD. Influence of early feeding style on adiposity at 6 years of age. J Pediatr. 1990;116(5):805–9. https://doi.org/10.1016/S0022-3476(05)82677-0.

    Article  PubMed  Google Scholar 

  44. Drabman RS, Hammer D, Jarvie GJ. Eating styles of obese and nonobese black and white children in a naturalistic setting. Addict Behav. 1977;2(2-3):83–6. https://doi.org/10.1016/0306-4603(77)90023-5.

    Article  PubMed  Google Scholar 

  45. Drabman RS, Cordua GD, Hammer D, Jarvie GJ, Horton W. Developmental trends in eating rates of normal and overweight preschool children. Child Dev. 1979;50(1):211–6. https://doi.org/10.1111/j.1467-8624.1979.tb02996.x.

    Article  PubMed  Google Scholar 

  46. Carnell S, Wardle J. Measuring behavioural susceptibility to obesity: validation of the child eating behaviour questionnaire. Appetite. 2007;48(1):104–13. https://doi.org/10.1016/j.appet.2006.07.075.

    Article  PubMed  Google Scholar 

  47. Syrad H, Johnson L, Wardle J, Llewellyn CH. Appetitive traits and food intake patterns in early life. Am J Clin Nutr. 2016;103(1):231–5. https://doi.org/10.3945/ajcn.115.117382.

    Article  PubMed  Google Scholar 

  48. Fogel A, Fries LR, McCrickerd K, et al. Oral processing behaviours that promote children’s energy intake are associated with parent-reported appetitive traits: Results from the GUSTO cohort. Appetite. 2018;126:8–15. https://doi.org/10.1016/j.appet.2018.03.011.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Llewellyn CH, Van Jaarsveld CHM, Boniface D, Carnell S, Wardle J. Eating rate is a heritable phenotype related to weight in children. Am J Clin Nutr. 2008;88(6):1560–6. https://doi.org/10.3945/ajcn.2008.26175.

    Article  PubMed  Google Scholar 

  50. Berkowitz RI, Moore RH, Faith MS, Stallings VA, Kral TVE, Stunkard AJ. Identification of an obese eating style in 4-year-old children born at high and low risk for obesity. Obesity. 2010;18(3):505–12. https://doi.org/10.1038/oby.2009.299.

    Article  PubMed  Google Scholar 

  51. Fogel A, Goh AT, Fries LR, et al. Faster eating rates are associated with higher energy intakes during an ad libitum meal, higher BMI and greater adiposity among 4·5-year-old children: Results from the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) cohort. Br J Nutr. 2017;117(7):1042–51. https://doi.org/10.1017/S0007114517000848.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Robinson E, Almiron-Roig E, Rutters F, et al. A systematic review and meta-analysis examining the effect of eating rate on energy intake and hunger. Am J Clin Nutr. 2014;100(1):123–51. https://doi.org/10.3945/ajcn.113.081745.

    Article  PubMed  Google Scholar 

  53. McCrickerd K, Forde CG. Consistency of eating rate, oral processing behaviours and energy intake across meals. Nutrients. 2017;9(8):891. https://doi.org/10.3390/nu9080891.

    Article  PubMed Central  Google Scholar 

  54. Ioakimidis I, Zandian M, Eriksson-Marklund L, Bergh C, Grigoriadis A, Södersten P. Description of chewing and food intake over the course of a meal. Physiol Behav. 2011;104(5):761–9. https://doi.org/10.1016/j.physbeh.2011.07.021.

    Article  PubMed  Google Scholar 

  55. Henry CJ, Ponnalagu S, Bi X, Forde C. Does basal metabolic rate drive eating rate? Physiol Behav. 2018;189:74–7. https://doi.org/10.1016/j.physbeh.2018.03.013.

    Article  PubMed  Google Scholar 

  56. Fogel A, McCrickerd K, Goh AT, et al. Associations between inhibitory control, eating behaviours and adiposity in 6-year-old children. Int J Obes. 2019;43(7):1344–53. https://doi.org/10.1038/s41366-019-0343-y.

    Article  Google Scholar 

  57. Faith MS, Scanlon KS, Birch LL, Francis LA, Sherry B. Parent-child feeding strategies and their relationships to child eating and weight status. Obes Res. 2004;12(11):1711–22. https://doi.org/10.1038/oby.2004.212.

    Article  PubMed  Google Scholar 

  58. Zhu Y, Hsu WH, Hollis JH. Increasing the number of masticatory cycles is associated with reduced appetite and altered postprandial plasma concentrations of gut hormones, insulin and glucose. Br J Nutr. 2013;110(2):384–90. https://doi.org/10.1017/S0007114512005053.

    Article  PubMed  Google Scholar 

  59. Ford AL, Bergh C, Södersten P, et al. Treatment of childhood obesity by retraining eating behaviour: Randomised controlled trial. BMJ. 2010;340:b5388. https://doi.org/10.1136/bmj.b5388.

    Article  Google Scholar 

  60. Ferriday D, Bosworth ML, Godinot N, et al. Variation in the oral processing of everyday meals is associated with fullness and meal size: a potential nudge to reduce energy intake? Nutrients. 2016;8(5):315. https://doi.org/10.3390/nu8050315.

    Article  PubMed Central  Google Scholar 

  61. Aguayo-Mendoza MG, Ketel EC, van der Linden E, Forde CG, Piqueras-Fiszman B, Stieger M. Oral processing behavior of drinkable, spoonable and chewable foods is primarily determined by rheological and mechanical food properties. Food Qual Prefer. 2019;71:87–95. https://doi.org/10.1016/j.foodqual.2018.06.006.

    Article  Google Scholar 

  62. Forde CG, Bolhuis D, Thaler T, De Graaf C, Martin N. Influence of meal texture on eating rate and food intake: Results from three ad-libitum trials. Appetite. 2013;71:474. https://doi.org/10.1016/j.appet.2013.06.023.

    Article  Google Scholar 

  63. Forde CG, van Kuijk N, Thaler T, de Graaf C, Martin N. Texture and savoury taste influences on food intake in a realistic hot lunch time meal. Appetite. 2013;60(1):180–6. https://doi.org/10.1016/j.appet.2012.10.002.

    Article  PubMed  Google Scholar 

  64. McCrickerd K, Lim CMH, Leong C, Chia EM, Forde CG. Texture-based differences in eating rate reduce the impact of increased energy density and large portions on meal size in adults. J Nutr. 2017;147(6):1208–17. https://doi.org/10.3945/jn.116.244251.

    Article  PubMed  Google Scholar 

  65. Mccrickerd K, Forde CG. Sensory influences on food intake control: Moving beyond palatability. Obes Rev. 2016;17(1):18–29. https://doi.org/10.1111/obr.12340.

    Article  PubMed  Google Scholar 

  66. Preparation and use of food-based dietary guidelines. World Health Organization technical report series. 1998.

    Google Scholar 

  67. European Commission. Scientific opinion on nutrient requirements and dietary intakes of infants and young children in the European Union. EFSA J. 2013;11(10):3408. https://doi.org/10.2903/j.efsa.2013.3408.

    Article  Google Scholar 

  68. Buttriss JL, Welch AA, Kearney JM, Lanham SA. Public health nutrition. 2nd ed. Hoboken, NJ: Wiley; 2017.

    Google Scholar 

  69. Roberts C, Steer T, Maplethorpe N, et al. National diet and nutrition survey: results from years 7 and 8 (combined) of the Rolling Programme (2014/2015-2015/2016). England, UK: Public Health England; 2018.

    Google Scholar 

  70. Chung ST, Onuzuruike AU, Magge SN. Cardiometabolic risk in obese children. Ann N Y Acad Sci. 2018;1411(1):166–83. https://doi.org/10.1111/nyas.13602.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Weaver CM, Gordon CM, Janz KF, et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int. 2016;27(4):1281–386. https://doi.org/10.1007/s00198-015-3440-3.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Weichselbaum E, Buttriss JL. Diet, nutrition and schoolchildren: an update. Nutr Bull. 2014;39(1):9–73. https://doi.org/10.1111/nbu.12071.

    Article  Google Scholar 

  73. Clarke MA, Joshu CE. Early life exposures and adult cancer risk. Epidemiol Rev. 2017;39(1):11–27. https://doi.org/10.1093/epirev/mxx004.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mazarello Paes V, Hesketh K, O’Malley C, et al. Determinants of sugar-sweetened beverage consumption in young children: a systematic review. Obes Rev. 2015;16(11):903–13. https://doi.org/10.1111/obr.12310.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Goldacre M, Hall N, Yeates DGR. Hospitalisation for children with rickets in England: a historical perspective. Lancet. 2014;383(9917):597–8. https://doi.org/10.1016/S0140-6736(14)60211-7.

    Article  PubMed  Google Scholar 

  76. Appleby P, Roddam A, Allen N, Key T. Comparative fracture risk in vegetarians and nonvegetarians in EPIC-Oxford. Eur J Clin Nutr. 2007;61(12):1400–6. https://doi.org/10.1038/sj.ejcn.1602659.

    Article  PubMed  Google Scholar 

  77. Cole NC, An R, Lee SY, Donovan SM. Correlates of picky eating and food neophobia in young children: A systematic review and meta-analysis. Nutr Rev. 2017;75(7):516–32. https://doi.org/10.1093/nutrit/nux024.

    Article  PubMed  Google Scholar 

  78. Taylor CM, Emmett PM. Picky eating in children: causes and consequences. In: Proceedings of the Nutrition Society; 2019. https://doi.org/10.1017/S0029665118002586.

  79. Nwaru BI, Hickstein L, Panesar SS, et al. The epidemiology of food allergy in Europe: a systematic review and meta-analysis. Allergy Eur J Allergy Clin Immunol. 2014;69(1):62–75. https://doi.org/10.1111/all.12305.

    Article  Google Scholar 

  80. D’Auria E, Abrahams M, Zuccotti G, Venter C. Personalized nutrition approach in food allergy: is it prime time yet? Nutrients. 2019;11(2):359. https://doi.org/10.3390/nu11020359.

    Article  PubMed Central  Google Scholar 

  81. Meyer R, Wright K, Vieira MC, et al. International survey on growth indices and impacting factors in children with food allergies. J Hum Nutr Diet. 2019;32(2):175–84. https://doi.org/10.1111/jhn.12610.

    Article  PubMed  Google Scholar 

  82. Sinai T, Goldberg MR, Nachshon L, et al. Reduced final height and inadequate nutritional intake in cow’s milk-allergic young adults. J Allergy Clin Immunol Pract. 2019;7(2):509–15. https://doi.org/10.1016/j.jaip.2018.11.038.

    Article  PubMed  Google Scholar 

  83. Venter C, Mazzocchi A, Maslin K, Agostoni C. Impact of elimination diets on nutrition and growth in children with multiple food allergies. Curr Opin Allergy Clin Immunol. 2017;17(3):220–6. https://doi.org/10.1097/ACI.0000000000000358.

    Article  PubMed  Google Scholar 

  84. Lebwohl B, Sanders DS, Green PHR. Coeliac disease. Lancet. 2018;391(10115):70–81. https://doi.org/10.1016/S0140-6736(17)31796-8.

    Article  PubMed  Google Scholar 

  85. Pellegrini N, Agostoni C. Nutritional aspects of gluten-free products. J Sci Food Agric. 2015;95(12):2380–5. https://doi.org/10.1002/jsfa.7101.

    Article  PubMed  Google Scholar 

  86. Vo M, Accurso EC, Goldschmidt AB, Le Grange D. The impact of DSM-5 on eating disorder diagnoses. Int J Eat Disord. 2017;50(5):578–81. https://doi.org/10.1002/eat.22628.

    Article  PubMed  Google Scholar 

  87. Lo Russo L, Campisi G, Di Fede O, Di Liberto C, Panzarella V, Lo Muzio L. Oral manifestations of eating disorders: a critical review. Oral Dis. 2008;14(6):479–84. https://doi.org/10.1111/j.1601-0825.2007.01422.x.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne P. Nugent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Forde, C.G., McKinley, M.C., Woodside, J.V., Nugent, A.P. (2021). Nutritional Considerations in Children. In: McKenna, G. (eds) Nutrition and Oral Health. Springer, Cham. https://doi.org/10.1007/978-3-030-80526-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80526-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80525-8

  • Online ISBN: 978-3-030-80526-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics