Skip to main content

Catecholaminergic Polymorphic Ventricular Tachycardia

  • Chapter
  • First Online:
Sport-related sudden cardiac death

Abstract

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare malignant inherited arrhythmogenic disorder of the structurally normal heart, characterized by catecholamine-mediated ventricular tachycardia. Although the estimated prevalence is 1:10,000, it represents an important cause of juvenile sudden cardiac death.

CPVT is a genetically heterogeneous disease: it is caused by mutations in seven genes, all of which are involved in intracellular calcium homeostasis. Majority of cases are related to heterozygous, gain-of-function mutations on the RYR2 gene, which was discovered as the first disease gene in 2001, while mutations on CASQ2 account for the majority of autosomal recessive forms. Both RYR2 and CASQ2 mutations cause delayed afterdepolarizations and triggered arrhythmias, while the arrhythmogenic mechanisms underlying TRDN, TECRL, and CALM1-3 mutations are incompletely understood.

Exercise and/or emotional stress are triggers of bidirectional and/or polymorphic ventricular arrhythmias that may lead to syncope or cardiac arrest. Exercise stress test plays a pivotal role in the diagnosis of CPVT.

Beta-blockers represent the gold standard for treatment, while flecainide and left cardiac sympathetic denervation are second-line treatments. An implantable cardioverter defibrillator is indicated in cardiac arrest survivors or in patients experiencing recurrent syncope or arrhythmic despite optimal medical therapy to prevent sudden cardiac death.

The authors have no conflicts of interest to disclose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Coumel P, Fidelle J, Lucet V, Attuel P, Bouvrain Y. Catecholamine-induced severe ventricular arrhythmias with Adams-Stokes syndrome in children: report of four cases. Br Heart J. 1978;40:28–37.

    Google Scholar 

  2. Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the Europe. Eur Heart J. 2015;36:2793–867. https://doi.org/10.1093/eurheartj/ehv316.

    Article  PubMed  Google Scholar 

  3. Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2001;103:196–200. https://doi.org/10.1161/01.cir.103.2.196.

    Article  CAS  PubMed  Google Scholar 

  4. Lahat H, Pras E, Olender T, Avidan N, Ben-Asher E, Man O, et al. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet. 2001;69:1378–84. https://doi.org/10.1086/324565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Priori SG, Wilde AA, Horie M, Cho Y, Behr ER, Berul C, et al. Executive summary: HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Heart Rhythm. 2013;10:e85–108. https://doi.org/10.1016/j.hrthm.2013.07.021.

    Article  PubMed  Google Scholar 

  6. Jiménez-Jáimez J, Peinado R, Grima EZ, Segura F, Moriña P, Sánchez Muñoz JJ, et al. Diagnostic approach to unexplained cardiac arrest (from the FIVI-Gen Study). Am J Cardiol. 2015;116:894–9. https://doi.org/10.1016/j.amjcard.2015.06.030.

    Article  PubMed  Google Scholar 

  7. Hayashi M, Denjoy I, Extramiana F, Maltret A, Buisson NR, Lupoglazoff J-M, et al. Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation. 2009;119:2426–34. https://doi.org/10.1161/CIRCULATIONAHA.108.829267.

    Article  CAS  PubMed  Google Scholar 

  8. Priori SG, Napolitano C, Memmi M, Colombi B, Drago F, Gasparini M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002;106:69–74. https://doi.org/10.1161/01.cir.0000020013.73106.d8.

    Article  CAS  PubMed  Google Scholar 

  9. Leenhardt A, Lucet V, Denjoy I, Grau F, Ngoc DD, Coumel P. Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation. 1995;91:1512–9. https://doi.org/10.1161/01.cir.91.5.1512.

    Article  CAS  PubMed  Google Scholar 

  10. Ng K, Titus EW, Lieve KV, Roston TM, Mazzanti A, Deiter FH, et al. An international multi-center evaluation of inheritance patterns, arrhythmic risks, and underlying mechanisms of CASQ2- Catecholaminergic polymorphic ventricular tachycardia. Circulation. 2020;142(10):932–47. https://doi.org/10.1161/CIRCULATIONAHA.120.045723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gray B, Bagnall RD, Lam L, Ingles J, Turner C, Haan E, et al. A novel heterozygous mutation in cardiac calsequestrin causes autosomal dominant catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2016;13:1652–60. https://doi.org/10.1016/j.hrthm.2016.05.004.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem. 1997;272:23389–97. https://doi.org/10.1074/jbc.272.37.23389.

    Article  CAS  PubMed  Google Scholar 

  13. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415:198–205. https://doi.org/10.1038/415198a.

    Article  CAS  PubMed  Google Scholar 

  14. Györke I, Hester N, Jones LR, Györke S. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys J. 2004;86:2121–8. https://doi.org/10.1016/S0006-3495(04)74271-X.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Roux-Buisson N, Cacheux M, Fourest-Lieuvin A, Fauconnier J, Brocard J, Denjoy I, et al. Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum Mol Genet. 2012;21:2759–67. https://doi.org/10.1093/hmg/dds104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nyegaard M, Overgaard MT, Søndergaard MT, Vranas M, Behr ER, Hildebrandt LL, et al. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Am J Hum Genet. 2012;91:703–12. https://doi.org/10.1016/j.ajhg.2012.08.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Makita N, Yagihara N, Crotti L, Johnson CN, Beckmann B-M, Roh MS, et al. Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circ Cardiovasc Genet. 2014;7:466–74. https://doi.org/10.1161/CIRCGENETICS.113.000459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gomez-Hurtado N, Boczek NJ, Kryshtal DO, Johnson CN, Sun J, Nitu FR, et al. Novel CPVT-associated calmodulin mutation in CALM3 (CALM3-A103V) activates arrhythmogenic Ca waves and sparks. Circ Arrhythm Electrophysiol. 2016;9. https://doi.org/10.1161/CIRCEP.116.004161.

  19. Devalla HD, Gélinas R, Aburawi EH, Beqqali A, Goyette P, Freund C, et al. TECRL, a new life-threatening inherited arrhythmia gene associated with overlapping clinical features of both LQTS and CPVT. EMBO Mol Med. 2016;8:1390–408. https://doi.org/10.15252/emmm.201505719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Phys. 1983;245:C1–C14. https://doi.org/10.1152/ajpcell.1983.245.1.C1.

    Article  CAS  Google Scholar 

  21. Priori SG, Wayne Chen SR. Inherited dysfunction of sarcoplasmic reticulum Ca2+ handling and arrhythmogenesis. Circ Res. 2011;108:871–83. https://doi.org/10.1161/CIRCRESAHA.110.226845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Olubando D, Hopton C, Eden J, Caswell R, Lowri Thomas N, Roberts SA, et al. Classification and correlation of RYR2 missense variants in individuals with catecholaminergic polymorphic ventricular tachycardia reveals phenotypic relationships. J Hum Genet. 2020;65:531–9. https://doi.org/10.1038/s10038-020-0738-6.

    Article  CAS  PubMed  Google Scholar 

  23. Wehrens XHT, Lehnart SE, Huang F, Vest JA, Reiken SR, Mohler PJ, et al. FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell. 2003;113:829–40. https://doi.org/10.1016/s0092-8674(03)00434-3.

    Article  CAS  PubMed  Google Scholar 

  24. Ikemoto N, Yamamoto T. Regulation of calcium release by interdomain interaction within ryanodine receptors. Front Biosci. 2002;7:d671–83.

    Article  CAS  Google Scholar 

  25. Uchinoumi H, Yano M, Suetomi T, Ono M, Xu X, Tateishi H, et al. Catecholaminergic polymorphic ventricular tachycardia is caused by mutation-linked defective conformational regulation of the ryanodine receptor. Circ Res. 2010;106:1413–24. https://doi.org/10.1161/CIRCRESAHA.109.209312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang D, Xiao B, Yang D, Wang R, Choi P, Zhang L, et al. RyR2 mutations linked to ventricular tachycardia and sudden death reduce the threshold for store-overload-induced Ca2+ release (SOICR). Proc Natl Acad Sci U S A. 2004;101:13062–7. https://doi.org/10.1073/pnas.0402388101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang D, Wang R, Xiao B, Kong H, Hunt DJ, Choi P, et al. Enhanced store overload-induced Ca2+ release and channel sensitivity to luminal Ca2+ activation are common defects of RyR2 mutations linked to ventricular tachycardia and sudden death. Circ Res. 2005;97:1173–81. https://doi.org/10.1161/01.RES.0000192146.85173.4b.

    Article  CAS  PubMed  Google Scholar 

  28. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell. 2000;101:365–76. https://doi.org/10.1016/s0092-8674(00)80847-8.

    Article  CAS  PubMed  Google Scholar 

  29. Xiao B, Tian X, Xie W, Jones PP, Cai S, Wang X, et al. Functional consequence of protein kinase A-dependent phosphorylation of the cardiac ryanodine receptor: sensitization of store overload-induced Ca2+ release. J Biol Chem. 2007;282:30256–64. https://doi.org/10.1074/jbc.M703510200.

    Article  CAS  PubMed  Google Scholar 

  30. Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res. 2005;97:1314–22. https://doi.org/10.1161/01.RES.0000194329.41863.89.

    Article  CAS  PubMed  Google Scholar 

  31. Terentyev D, Viatchenko-Karpinski S, Györke I, Volpe P, Williams SC, Györke S. Calsequestrin determines the functional size and stability of cardiac intracellular calcium stores: mechanism for hereditary arrhythmia. Proc Natl Acad Sci U S A. 2003;100:11759–64. https://doi.org/10.1073/pnas.1932318100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Terentyev D, Nori A, Santoro M, Viatchenko-Karpinski S, Kubalova Z, Gyorke I, et al. Abnormal interactions of calsequestrin with the ryanodine receptor calcium release channel complex linked to exercise-induced sudden cardiac death. Circ Res. 2006;98:1151–8. https://doi.org/10.1161/01.RES.0000220647.93982.08.

    Article  CAS  PubMed  Google Scholar 

  33. Milstein ML, Houle TD, Cala SE. Calsequestrin isoforms localize to different ER subcompartments: evidence for polymer and heteropolymer-dependent localization. Exp Cell Res. 2009;315:523–34. https://doi.org/10.1016/j.yexcr.2008.11.006.

    Article  CAS  PubMed  Google Scholar 

  34. McFarland TP, Milstein ML, Cala SE. Rough endoplasmic reticulum to junctional sarcoplasmic reticulum trafficking of calsequestrin in adult cardiomyocytes. J Mol Cell Cardiol. 2010;49:556–64. https://doi.org/10.1016/j.yjmcc.2010.05.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kornyeyev D, Petrosky AD, Zepeda B, Ferreiro M, Knollmann B, Escobar AL. Calsequestrin 2 deletion shortens the refractoriness of Ca2+ release and reduces rate-dependent Ca2+-alternans in intact mouse hearts. J Mol Cell Cardiol. 2012;52:21–31. https://doi.org/10.1016/j.yjmcc.2011.09.020.

    Article  CAS  PubMed  Google Scholar 

  36. Chopra N, Yang T, Asghari P, Moore ED, Huke S, Akin B, et al. Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation-contraction coupling, and cardiac arrhythmias. Proc Natl Acad Sci U S A. 2009;106:7636–41. https://doi.org/10.1073/pnas.0902919106.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu N, Colombi B, Memmi M, Zissimopoulos S, Rizzi N, Negri S, et al. Arrhythmogenesis in catecholaminergic polymorphic ventricular tachycardia. Circ Res. 2006;99:292–8. https://doi.org/10.1161/01.RES.0000235869.50747.e1.

    Article  CAS  PubMed  Google Scholar 

  38. Sung RJ, Lo C-P, Hsiao PY, Tien H-C. Targeting intracellular calcium cycling in catecholaminergic polymorphic ventricular tachycardia: a theoretical investigation. Am J Physiol Heart Circ Physiol. 2011;301:H1625–38. https://doi.org/10.1152/ajpheart.00696.2010.

    Article  CAS  PubMed  Google Scholar 

  39. Xie Y, Sato D, Garfinkel A, Qu Z, Weiss JN. So little source, so much sink: requirements for after depolarizations to propagate in tissue. Biophys J. 2010;99:1408–15. https://doi.org/10.1016/j.bpj.2010.06.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cerrone M, Noujaim SF, Tolkacheva EG, Talkachou A, O’Connell R, Berenfeld O, et al. Arrhythmogenic mechanisms in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Circ Res. 2007;101:1039–48. https://doi.org/10.1161/CIRCRESAHA.107.148064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baher AA, Uy M, Xie F, Garfinkel A, Qu Z, Weiss JN. Bidirectional ventricular tachycardia: ping pong in the His-Purkinje system. Heart Rhythm. 2011;8:599–605. https://doi.org/10.1016/j.hrthm.2010.11.038.

    Article  PubMed  Google Scholar 

  42. Roston TM, Vinocur JM, Maginot KR, Mohammed S, Salerno JC, Etheridge SP, et al. Catecholaminergic polymorphic ventricular tachycardia in children: analysis of therapeutic strategies and outcomes from an international multicenter registry. Circ Arrhythm Electrophysiol. 2015;8:633–42. https://doi.org/10.1161/CIRCEP.114.002217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sy RW, Gollob MH, Klein GJ, Yee R, Skanes AC, Gula LJ, et al. Arrhythmia characterization and long-term outcomes in catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2011;8:864–71. https://doi.org/10.1016/j.hrthm.2011.01.048.

    Article  PubMed  Google Scholar 

  44. Dhindwal S, Lobo J, Cabra V, Santiago DJ, Nayak AR, Dryden K, et al. A cryo-EM-based model of phosphorylation- and FKBP12.6-mediated allosterism of the cardiac ryanodine receptor. Sci Signal. 2017;10:eaai8842. https://doi.org/10.1126/scisignal.aai8842.

    Article  CAS  PubMed  Google Scholar 

  45. Kapplinger JD, Pundi KN, Larson NB, Callis TE, Tester DJ, Bikker H, et al. Yield of the RYR2 genetic test in suspected catecholaminergic polymorphic ventricular tachycardia and implications for test interpretation. Circ Genomic Precis Med. 2018;11:e001424. https://doi.org/10.1161/CIRCGEN.116.001424.

    Article  CAS  Google Scholar 

  46. Mazzanti A, Guz D, Trancuccio A, Pagan E, Kukavica D, Chargeishvili T, et al. Natural history and risk stratification in Andersen-Tawil syndrome type 1. J Am Coll Cardiol. 2020;75:1772–84. https://doi.org/10.1016/j.jacc.2020.02.033.

    Article  CAS  PubMed  Google Scholar 

  47. Andersen ED, Krasilnikoff PA, Overvad H. Intermittent muscular weakness, extrasystoles, and multiple developmental anomalies. A new syndrome? Acta Paediatr Scand. 1971;60:559–64. https://doi.org/10.1111/j.1651-2227.1971.tb06990.x.

    Article  CAS  PubMed  Google Scholar 

  48. Inoue YY, Aiba T, Kawata H, Sakaguchi T, Mitsuma W, Morita H, et al. Different responses to exercise between Andersen-Tawil syndrome and catecholaminergic polymorphic ventricular tachycardia. Europace. 2018;20:1675–82. https://doi.org/10.1093/europace/eux351.

    Article  PubMed  Google Scholar 

  49. Kukla P, Biernacka EK, Baranchuk A, Jastrzebski M, Jagodzinska M. Electrocardiogram in Andersen-Tawil syndrome. New electrocardiographic criteria for diagnosis of type-1 Andersen-Tawil syndrome. Curr Cardiol Rev. 2014;10:222–8. https://doi.org/10.2174/1573403x10666140514102528.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ostby SA, Bos JM, Owen HJ, Wackel PL, Cannon BC, Ackerman MJ. Competitive sports participation in patients with catecholaminergic polymorphic ventricular tachycardia: a single center’s early experience. JACC Clin Electrophysiol. 2016;2:253–62. https://doi.org/10.1016/j.jacep.2016.01.020.

    Article  PubMed  Google Scholar 

  51. Ackerman MJ, Zipes DP, Kovacs RJ, Maron BJ. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 10: the cardiac channelopathies: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015;66:2424–8. https://doi.org/10.1016/j.jacc.2015.09.042.

    Article  PubMed  Google Scholar 

  52. Hayashi M, Denjoy I, Hayashi M, Extramiana F, Maltret A, Roux-Buisson N, et al. The role of stress test for predicting genetic mutations and future cardiac events in asymptomatic relatives of catecholaminergic polymorphic ventricular tachycardia probands. Europace. 2012;14:1344–51. https://doi.org/10.1093/europace/eus031.

    Article  PubMed  Google Scholar 

  53. Leren IS, Saberniak J, Majid E, Haland TF, Edvardsen T, Haugaa KH. Nadolol decreases the incidence and severity of ventricular arrhythmias during exercise stress testing compared with β1-selective β-blockers in patients with catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2016;13:433–40. https://doi.org/10.1016/j.hrthm.2015.09.029.

    Article  PubMed  Google Scholar 

  54. van der Werf C, Zwinderman AH, Wilde AAM. Therapeutic approach for patients with catecholaminergic polymorphic ventricular tachycardia: state of the art and future developments. Europace. 2012;14:175–83. https://doi.org/10.1093/europace/eur277.

    Article  PubMed  Google Scholar 

  55. Liu N, Denegri M, Ruan Y, Avelino-Cruz JE, Perissi A, Negri S, et al. Short communication: flecainide exerts an antiarrhythmic effect in a mouse model of catecholaminergic polymorphic ventricular tachycardia by increasing the threshold for triggered activity. Circ Res. 2011;109:291–5. https://doi.org/10.1161/CIRCRESAHA.111.247338.

    Article  CAS  PubMed  Google Scholar 

  56. van der Werf C, Kannankeril PJ, Sacher F, Krahn AD, Viskin S, Leenhardt A, et al. Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. J Am Coll Cardiol. 2011;57:2244–54. https://doi.org/10.1016/j.jacc.2011.01.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kannankeril PJ, Moore JP, Cerrone M, Priori SG, Kertesz NJ, Ro PS, et al. Efficacy of flecainide in the treatment of catecholaminergic polymorphic ventricular tachycardia: a randomized clinical trial. JAMA Cardiol. 2017;2:759–66. https://doi.org/10.1001/jamacardio.2017.1320.

    Article  PubMed  PubMed Central  Google Scholar 

  58. De Ferrari GM, Dusi V, Spazzolini C, Bos JM, Abrams DJ, Berul CI, et al. Clinical management of catecholaminergic polymorphic ventricular tachycardia: the role of left cardiac sympathetic denervation. Circulation. 2015;131:2185–93. https://doi.org/10.1161/CIRCULATIONAHA.115.015731.

    Article  PubMed  Google Scholar 

  59. Marai I, Boulos M, Khoury A. Left cardiac sympathetic denervation in patients with CASQ2-associated catecholaminergic polymorphic ventricular tachycardia. Isr Med Assoc J. 2015;17:538–40.

    PubMed  Google Scholar 

  60. Roston TM, Jones K, Hawkins NM, Bos JM, Schwartz PJ, Perry F, et al. Implantable cardioverter-defibrillator use in catecholaminergic polymorphic ventricular tachycardia: a systematic review. Heart Rhythm. 2018;15:1791–9. https://doi.org/10.1016/j.hrthm.2018.06.046.

    Article  PubMed  Google Scholar 

  61. Miyake CY, Webster G, Czosek RJ, Kantoch MJ, Dubin AM, Avasarala K, et al. Efficacy of implantable cardioverter defibrillators in young patients with catecholaminergic polymorphic ventricular tachycardia: success depends on substrate. Circ Arrhythm Electrophysiol. 2013;6:579–87. https://doi.org/10.1161/CIRCEP.113.000170.

    Article  CAS  PubMed  Google Scholar 

  62. Penttinen K, Swan H, Vanninen S, Paavola J, Lahtinen AM, Kontula K, et al. Antiarrhythmic effects of Dantrolene in patients with catecholaminergic polymorphic ventricular tachycardia and replication of the responses using iPSC models. PLoS One. 2015;10:e0125366. https://doi.org/10.1371/journal.pone.0125366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Denegri M, Avelino-Cruz JE, Boncompagni S, De Simone SA, Auricchio A, Villani L, et al. Viral gene transfer rescues arrhythmogenic phenotype and ultrastructural abnormalities in adult calsequestrin-null mice with inherited arrhythmias. Circ Res. 2012;110:663–8. https://doi.org/10.1161/CIRCRESAHA.111.263939.

    Article  CAS  PubMed  Google Scholar 

  64. Bongianino R, Denegri M, Mazzanti A, Lodola F, Vollero A, Boncompagni S, et al. Allele-specific silencing of mutant mRNA rescues ultrastructural and arrhythmic phenotype in mice carriers of the R4496C mutation in the ryanodine receptor gene (RYR2). Circ Res. 2017;121:525–36. https://doi.org/10.1161/CIRCRESAHA.117.310882.

    Article  CAS  PubMed  Google Scholar 

  65. Pan X, Philippen L, Lahiri SK, Lee C, Park SH, Word TA, et al. In vivo Ryr2 editing corrects catecholaminergic polymorphic ventricular tachycardia. Circ Res. 2018;123:953–63. https://doi.org/10.1161/CIRCRESAHA.118.313369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu N, Ruan Y, Denegri M, Bachetti T, Li Y, Colombi B, et al. Calmodulin kinase II inhibition prevents arrhythmias in RyR2(R4496C+/−) mice with catecholaminergic polymorphic ventricular tachycardia. J Mol Cell Cardiol. 2011;50:214–22. https://doi.org/10.1016/j.yjmcc.2010.10.001.

    Article  CAS  PubMed  Google Scholar 

  67. Bezzerides VJ, Caballero A, Wang S, Ai Y, Hylind RJ, Lu F, et al. Gene therapy for catecholaminergic polymorphic ventricular tachycardia by inhibition of ca(2+)/calmodulin-dependent kinase II. Circulation. 2019;140:405–19. https://doi.org/10.1161/CIRCULATIONAHA.118.038514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Mazzanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kukavica, D., Trancuccio, A., Mazzanti, A., Priori, S.G. (2022). Catecholaminergic Polymorphic Ventricular Tachycardia. In: Delise, P., Zeppilli, P. (eds) Sport-related sudden cardiac death. Springer, Cham. https://doi.org/10.1007/978-3-030-80447-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80447-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80446-6

  • Online ISBN: 978-3-030-80447-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics