L.G. Bennetts, T.D. Williams, Water wave transmission by an array of floating discs. Proc. r. Soc. A 471, 20140698 (2015). https://doi.org/10.1098/rspa.2014.0698
CrossRef
Google Scholar
S. Cheng, A. Tsarau, K. U. Evers, H. Shen, Floe size effect on gravity wave propagation through ice covers. JGR–Oceans 124, 320–334 (2019). https://doi.org/10.1029/2018JC014094
CICE Consortium. CICE Documentation. https://buildmedia.readthedocs.org/media/pdf/cice-consortium-cice/master/cice-consortium-cice.pdf. pp. 104 (2019)
G. Carolis De, D. Desiderio, Dispersion and attenuation of gravity waves in ice: a two-layer viscous fluid model with experimental data validation. Phys. Lett. A 305(6), 399–412 (2002). https://doi.org/10.1016/S0375-9601(02)01503-7
M. J. Doble, M. D. Coon, P. Wadhams, Pancake ice formation in the Weddell Sea, JGR–Oceans. 108:3209 (2003). https://doi.org/10.1029/2002JC001373
M. J. Doble, P. Wadhams, Dynamical contrasts between pancake and pack ice, investigated with a drifting buoy array. JGR–Oceans. 111, C11S24. (2006) https://doi.org/10.1029/2005JC003320
M.J. Doble, G. De Carolis, M.H. Meylan, J.-R. Bidlot, P. Wadhams, Relating wave attenuation to pancake ice thickness, using field measurements and model results. Geophys. Res. Lett. 42, 4473–4481 (2015). https://doi.org/10.1002/2015GL063628
CrossRef
Google Scholar
W. Flügge, Viscoelasticity. Springer (1975). https://doi.org/10.1007/978-3-662-02276-4,194pp
CrossRef
MATH
Google Scholar
C. Fox, V. A. Squire, Reflection and transmission characteristics at the edge of shore fast sea ice. JGR–Oceans. 95, 11629–11639. (1990). https://doi.org/10.1029/JC095iC07p11629
C. Fox, V. A. Squire, Strain in shore fast ice due to incoming ocean waves and swell. JGR – Oceans. 96, 4531–4547 (1991). https://doi.org/10.1029/90JC02270
C. Fox, V.A. Squire, On the oblique reflexion and transmission of ocean waves at shore fast sea ice. Phil. Trans. Royal Soc. a. 347(1682), 185–218 (1994). https://doi.org/10.1098/rsta.1994.0044
CrossRef
MATH
Google Scholar
A.G. Greenhill, Wave motion in hydrodynamics. Am. J. Math. 9(1), 62–96 (1886)
MathSciNet
CrossRef
Google Scholar
A. Herman, Wave-induced stress and breaking of sea ice in a coupled hydrodynamic discrete-element wave–ice model. Cryosphere. 11, 2711–2725 (2017). https://doi.org/10.5194/tc-11-2711-2017
CrossRef
Google Scholar
A. Herman, S. Cheng, H. H. Shen, Wave energy attenuation in field of colliding ice floes. Part 1: discrete-element modelling of dissipation due to ice–water drag. Cryosphere. 13, 2887–2900, (2019a) https://doi.org/10.5194/tc-13-2887-2019
A. Herman, S. Cheng, H. H. Shen, Wave energy attenuation in field of colliding ice floes. Part 2: a laboratory case study. Cryosphere. 13, 2901–2914, (2019b). https://doi.org/10.5194/tc-13-2901-2019
W. D. Hibler, A viscous sea ice law as a stochastic average of plasticity. JGR – Oceans. 82, 3932–3938. (1977).https://doi.org/10.1029/JC082i027p03932
J.B. Keller, M. Weitz, Reflection and transmission coefficients for waves entering or leaving an icefield. Commun. Pure Appl. Math. 6, 415–417 (1953)
MathSciNet
CrossRef
Google Scholar
J.B. Keller, Gravity waves on ice covered water. JGR–Oceans 103(C4), 7663–7669 (1998). https://doi.org/10.1029/97JC02966
CrossRef
Google Scholar
A.L. Kohout, M.H. Meylan, S. Sakai, K. Hanai, P. Leman, D. Brossard, Linear water wave propagation through multiple floating elastic plates of variable properties. J. Fluids and Structures 23(4), 649–663 (2007). https://doi.org/10.1016/j.jfluidstructs.2006.10.012
CrossRef
Google Scholar
A. L. Kohout, M. H. Meyla, An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone. JGR–Oceans, 113(C9) (2008). https://doi.org/10.1029/2007JC004434
A. Kohout, M. Williams, S. Dean et al., Storm-induced sea-ice breakup and the implications for ice extent. Nature 509, 604–607 (2014). https://doi.org/10.1038/nature13262
CrossRef
Google Scholar
R. Kwok, Declassified high-resolution visible imagery for Arctic sea ice investigations: an overview, Remote Sens. Environ. 142, 44–56 (2014). https://doi.org/10.1016/j.rse.2013.11.015
CrossRef
Google Scholar
M.A. Lange, S.F. Ackley, P. Wadhams, G.S. Dieckmann, H. Eicken, Development of sea ice in the Weddell sea. Annals Glacio. 12, 92–96 (1989). https://doi.org/10.3189/S0260305500007023
CrossRef
Google Scholar
C. M. Lee, J. Wilkinson, J. Thomson, T. Maksym (eds), Special feature: marginal ice zone processes in the summertime arctic, Elementa. University of California Press, E-ISSN:2325–1026, (2016)
Google Scholar
J. Li, A.L. Kohout, M.J. Dobel, P. Wadhams, C. Guan, H.H. Shen, Rollover of apparent wave attenuation in ice covered seas. JGR–Oceans 12, 8557–8566 (2017). https://doi.org/10.1002/2017JC012978.
CrossRef
Google Scholar
Liu and Mollo-Christensen, 1988. A. K. Liu, E. Mollo-Christensen, Wave propagation in a solid ice pack. J. Phys. Oceanogr. 18(11), 1702–1712, (1988) https://doi.org/10.1175/1520-0485(1988)018<1702:WPIASI>2.0.CO;2.
L. E. Malvern. Introduction to the mechanics of a continuous medium. Prentice-Hall, ISBN 13–487603–2, pp. 711, (1969)
Google Scholar
Medea, Scientific utility of naval environmental data – A MEDEA Special Task Force Report. a report to the navy meteorology and oceanography command. Va.: Medea Program Office McLean. 1995.
Google Scholar
M.H. Meylan, L.G. Bennetts, Three-dimensional time-domain scattering of waves in the marginal ice zone. Philos. Transactions. Ser. A. 376(2129), 20170334 (2018). https://doi.org/10.1098/rsta.2017.0334.
MathSciNet
CrossRef
MATH
Google Scholar
M. H. Meylan, L. G. Bennetts, J. E. M Mosig, W. E. Rogers, M. J. Doble, M. A. Peter, Dispersion relations, power laws, and energy loss for waves in the marginal ice zone. JGR–Oceans. 123, 3322–3335. (2018). https://doi.org/10.1002/2018JC013776.
L. Mitnik, V. Dubina, E. Khazanova, New ice formation in the Okhotsk sea and the Japan Sea from C- and L-band satellite SARs. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, pp. 4853–4856. (2016). https://doi.org/10.1109/IGARSS.2016.7730266.
F. Montiel, F. Bonnefoy, P. Ferrant, L. G. Bennetts, V. A. Squire, P. Marsault (2013) Hydroelastic response of floating elastic discs to regular waves. Part 1 wave basin experiments. J. Fluid Mech. 723 604 628 https://doi.org/10.1017/jfm.2013.123
F. Montiel, L.G. Bennetts, V.A. Squire, F. Bonnefoy, P. Ferrant, Hydroelastic response of floating elastic discs to regular waves. Part 2. modal analysis. J. Fluid Mech. J. Fluid Mech. 723, 629–652 (2013). https://doi.org/10.1017/jfm.2013.124
CrossRef
MATH
Google Scholar
J. E. Mosig, M. F. Montiel, V.A. Squire, Comparison of viscoelastic-type models for ocean wave attenuation in ice-covered seas, JGR–Oceans. 120, 6072–6090, (2015). https://doi.org/10.1002/2015JC010881
K. Newyear, S. Martin, Comparison of laboratory data with a viscous two-layer model of wave propagation in grease ice. JGR–Oceans. 104(C4):7837–7840. (1999). https://doi.org/10.1029/1999JC900002.
W. Perrie, Y. Hu, Air–ice–ocean momentum exchange. part ii: ice drift. J. Phys. Oceanogr. 27, 1976–1996 (1997). https://doi.org/10.1175/1520-0485(1997)027%3c1976:AIOMEP%3e2.0.CO;2
CrossRef
Google Scholar
J. Rabault, G. Sutherland, A. Jensen, K.H. Christensen, A. Marchenko, Experiments on wave propagation in grease ice: Combined wave gauges and particle image velocimetry measurements. J. Fluid Mech. 864, 876–898 (2019). https://doi.org/10.1017/jfm.2019.16
CrossRef
Google Scholar
L. A. Roach, M. M. Smith, S. M. Dean, Quantifying growth of pancake sea ice floes using images from drifting buoys. JGR–Oceans. 123, 2851–2866. (2018a) . org/https://doi.org/10.1002/2017JC013693
L. A. Roach, C. Horvat, S. M. Dean, C. M. Bitz, An emergent sea ice floe size distribution in a global coupled ocean–sea ice model. JGR – Oceans. 123, 4322–4337, (2018b). https://doi.org/10.1029/2017JC013692
W. E. Rogers, S. Zieger, New wave-ice interaction physics in WAVEWATCH III®. Proc. 22nd IAHR Int. Symp. Ice, IAHR, ISBN: 978–981–09–0750–1, p. 1252, (2014). https://doi.org/10.3850/978-981-09-0750-1
F. Santi De, P. Olla, Effect of small floating disks on the propagation of gravity waves Fluid Dynam. Res. 49(2), (2017). https://doi.org/10.1088/1873-7005/aa59e1
S. Sakai, K. Hanai, Empirical formula of dispersion relation of waves in sea ice. Proceedings of 16th IAHR international symposium on Ice in the environment, December 2–6, 2002, Dunedin, New Zealand
Google Scholar
H. H. Shen, S. F. Ackley, Y. Yuan, Limiting diameter of pancake ice, JGR–Oceans. 109(C12035) (2004). https://doi.org/10.1029/2003JC002123
M. Smith, J. Thomsonm, Pancake sea ice kinematics and dynamics using shipboard stereo video. Ann. Glacio. 1–11, (2019) https://doi.org/10.1017/aog.2019.35
M. Smith, S. Stammerjohn, O. Persson, L. Rainville, G. Liu, W. Perrie, et al. Episodic reversal of autumn ice advance caused by release of ocean heat in the beaufort sea. JGR–Oceans. 123, 3164–3185, (2018). https://doi.org/10.1002/2018JC013764
V.A. Squire, A. Allan, Propagation of flexural gravity waves in sea ice, in Sea Ice Processes and Models. ed. by R. Pritchard (Univ. of Wash. Press, Seattle, Wash, 1980), pp. 327–338
Google Scholar
V.A. Squire, S.C. Moore, Direct measurement of the attenuation of ocean waves by pack ice. Nature 283, 365–368 (1980). https://doi.org/10.1038/283365a0
CrossRef
Google Scholar
V.A. Squire, A comparison of the mass-loading and elastic plate models of an ice field. Cold Reg. Sci. Tech. 21, 219–229 (1993). https://doi.org/10.1016/0165-232X(93)90066-H
CrossRef
Google Scholar
V.A. Squire, W. Robinson, M.H. Meylan, T.G. Haskell, Observations of flexural waves on the Erebus Ice Tongue, McMurdo Sound, Antarctica, and nearby sea ice. J. Glacio 40(135), 377–385 (1994). https://doi.org/10.3189/S0022143000007462
CrossRef
Google Scholar
V.A. Squire, Of ocean waves and sea-ice revisited. Cold Reg. Sci. Tech. 49(2), 110–133 (2007). https://doi.org/10.1016/j.coldregions.2007.04.007
CrossRef
Google Scholar
V.A. Squire, A fresh look at how ocean waves and sea ice interact. Phil. Trans. r. Soc. a. 376, 20170342 (2018). https://doi.org/10.1098/rsta.2017.0342
CrossRef
MATH
Google Scholar
V.A. Squire, Ocean wave interactions with sea ice: a reappraisal. Ann. Rev. Fluild Mech. 52, 37–60 (2020). https://doi.org/10.1146/annurev-fluid-010719-060301
CrossRef
MATH
Google Scholar
D. K. K. Sree, A.W. K. Law, H.H. Shen, An experimental study on gravity waves through a floating viscoelastic cover, Cold Reg. Sci. Tech. (2018). https://doi.org/10.1016/j.coldregions.2018.08.013
The WAVEWATCH III® development group. 2019. User manual and system documentation of WAVEWATCH III® version 6.07. Tech. Note 333, NOAA/NWS/NCEP/MMAB, College Park, MD, USA, 465 pp. + Appendices.
Google Scholar
J. Thomson, S. Ackley, H. H. Shen, W. E. Rogers, The balance of ice, waves, and winds in the arctic autumn Eos 98 (2017). https://doi.org/10.1029/2017EO066029
J. Thomson, S. F. Ackley, F. Girard‐Ardhuin, F. Ardhuin, A. Babanin, G. Boutin, et al. Overview of the arctic sea state and boundary layer physics program, JGR–Oceans. 123, 8674–8687, (2018). https://doi.org/10.1002/2018JC013766.
Voermans et al., 2019. J. J. Voermans, A. V. Babanin, J. Thomson, M. M. Smith, H. H. Shen, Wave attenuation by sea ice turbulence. Geophys. Res. Lett. 46, (2019). https://doi.org/10.1029/2019GL082945
P. Wadhams, The effect of a sea ice cover on ocean surface waves, Ph.D. dissertation, University of Cambridge, pp. 223, (1973)
Google Scholar
P. Wadhams, A mechanism for the formation of ice edge bands, JR –Oceans. 88, 2813–2818, (1983), https://doi.org/10.1029/JC088iC05p02813
P. Wadhams, Ice In the ocean, CRC Press, 364 pp. ISBN- 10, 97 (2000)
Google Scholar
P. Wadhams, V.A. Squire, J.A. Ewing, R.W. Pascal, The Effect of the Marginal Ice Zone on the Directional Wave Spectrum of the Ocean. J. Phys. Oceanogr. 16, 358–376 (1986). https://doi.org/10.1175/1520-0485(1986)016%3c0358:TEOTMI%3e2.0.CO;2
CrossRef
Google Scholar
P. Wadhams, V.A. Squire, D.J. Goodman, A.M. Cowan, Moore S.C, The attenuation rates of ocean waves in the marginal ice zone, JGR – Oceans. 93:6799– 6818 (1988), doi:https://doi.org/10.1029/JC093iC06p06799.
P. Wadhams, V.A. Squire, P. Rottier, A.K. Liu, J. Dugan, P. Czipott, H.H. Shen, Workshop on wave-ice interaction. Eos. Trans. Am. Geophys. Union, 73(35):375–378 (1992). doi: https://doi.org/10.1029/91EO00288.
R. Wang, H.H. Shen, Gravity waves propagating into ice-covered ocean: a visco-elastic model. JGR – Oceans. 115(C06024) (2010a). doi:https://doi.org/10.1029/2009JC005591
R. Wang, H.H. Shen, Experimental study on surface wave propagating through a grease-pancake ice mixture. Cold Reg. Sci. Tech (2010b). doi:https://doi.org/10.1016/j.coldregions.2010.01.011
J.E. Weber, Wave Attenuation and Wave Drift in the Marginal Ice Zone. J. Phys. Oceanogr. 17(12), 2351–2361 (1987). https://doi.org/10.1175/1520-0485(1987)017%3c2351:WAAWDI%3e2.0.CO;2
CrossRef
Google Scholar
W. Weeks, A. Assur, The mechanical properties of sea ice, US Army Cold Regions Research and Engineering Monograph DA Project 1VO25001A130, pp. 94 (1967)
Google Scholar
M. Weitz, J.B. Keller, Reflection of water waves from floating ice in water of finite depth. Commun. Pure Appl. Math. 3, 305–318 (1950)
MathSciNet
CrossRef
Google Scholar
H. Wiebe, G. Heygster, T. Markus, Comparison of the ASI Ice Concentration Algorithm With Landsat-7 ETM+ and SAR Imagery. IEEE Trans. Geosci. Remote Sensing 47(9), 3008–3015 (2009). https://doi.org/10.1109/TGRS.2009.2026367
CrossRef
Google Scholar
T.D. Williams, L.G. Bennetts, V.A. Squire, D. Dumont, L. Bertino, Wave–ice interactions in the marginal ice zone. Part 1: Theoretical foundations. Ocean Model. 71, 81–91 (2013). https://doi.org/10.1016/j.ocemod.2013.05.010
CrossRef
Google Scholar
T.D. Williams, P. Rampal, S. Bouillon, Wave–ice interactions in the neXtSIM sea-ice model. Cryosphere 11, 2117–2135 (2017). https://doi.org/10.5194/tc-11-2117-2017
CrossRef
Google Scholar
L.J. Yiew, L.G. Bennetts, M.H. Meylan, B.J. French, G.A. Thomas, Hydrodynamic responses of a thin floating disk to regular waves. Ocean Model. 97, 52–64 (2016). https://doi.org/10.1016/j.ocemod.2015.11.008
CrossRef
Google Scholar
S. Zhang, J. Zhao, M. Li et al., An improved dual-polarized ratio algorithm for sea ice concentration retrieval from passive microwave satellite data and inter-comparison with ASI, ABA and NT2. J. Ocean. Limnol. 36, 1494–1508 (2018). https://doi.org/10.1007/s00343-018-7077-x
CrossRef
Google Scholar
Zhao, X., and Shen, H.H. 2015. Wave propagation in frazil/pancake, pancake, and fragmented ice covers, Cold Reg. Sci. Tech., doi:https://doi.org/10.1016/j.coldregions.2015.02.007
X. Zhao, S. Cheng, H.H. Shen, Nature of wave modes in coupled viscoelastic layer over water. J. Eng. Mech. 143(10), 04017114 (2017). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001332
CrossRef
Google Scholar
X. Zhao, H.H. Shen, A three-layer viscoelastic model with eddy viscosity effect for flexural-gravity wave propagation through ice covers. Ocean Model. 151, 15–23 (2018). https://doi.org/10.1016/j.ocemod.2018.08.007
CrossRef
Google Scholar
X. Zhao, H. Su, A. Stein, X. Pang, Comparison between AMSR-E ASI sea-ice concentration product, MODIS and pseudo-ship observations of the Antarctic sea-ice edge. Ann. Glacio. 56(69), 45–52 (2015). https://doi.org/10.3189/2015AoG69A588
CrossRef
Google Scholar