Skip to main content

Thermo-Hydrodynamics of Sea Ice Rubble

  • Conference paper
  • First Online:
IUTAM Symposium on Physics and Mechanics of Sea Ice

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 39))

Abstract

Results of the field work performed in the end of April (2017–2019) on drifting ice in the Barents Sea region extended between the island Hopen and Bear Island are discussed. The field investigations included measurements of ice rubble sizes and shapes, vertical profiles of ice temperature and salinity inside ice rubble, uniaxial compressive strength of ice cores taken from ice rubble, and vertical permeability of ice rubble. The ocean heat fluxes below the drift ice were measured in several expeditions in the Barents Sea since 2005 including the filed works in 2017–2019. A mathematical model was formulated, and numerical simulations were performed to explain the formation of completely consolidated ice rubble. It is shown that the ocean heat flux, the initial macro-porosity and the initial draft of the rubble are the main parameters influencing the consolidation process when the heat fluxes from the ice into the air are small. Numerical simulations showed that complete consolidation of ice rubble may occur in one year or even several months when the ocean heat flux is of about 20 W/m2 and the initial draft of ice rubble is smaller 10 m.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(P\) :

Pore pressure of brine in sea ice, Pa

\({P}_{w}\) :

Hydrostatic pressure of water, Pa

\({P}_{a}\) :

Atmosphere pressure, Pa

\(q\) :

Flux of liquid brine in sea ice, m/s

\(\mu =1.5\) mPa·s:

The dynamic viscosity of water

\(\kappa\) :

Permeability of sea ice by liquid brine, m2

\({\rho }_{sw}=1020\) kg/m3:

The mean sea water density

\(\rho\) :

Density of sea water brine at the freezing point, kg/m3

\({\rho }_{si}\) :

Sea ice density, kg/m3

\(c=4.19\) kJ/kg·C:

The specific heat capacity of water

\(T\) :

Water temperature, C

\({T}_{si}\) :

Temperature of sea ice, C

\(\sigma\) :

Sea water brine salinity

\({\sigma }_{si}\) :

Sea ice salinity

\({\nu }_{b}\) :

Liquid brine content of sea ice

\({Q}_{w}\) :

The vertical ocean heat flux, W/m2

\(E\) :

Cumulative vertical ocean heat flux, MJ/m2

\({h}_{r}\) :

Ice rubble draft, m

\({h}_{cl}\) :

Consolidated layer thickness, m

\({h}_{ur}\) :

The thickness of unconsolidated ice rubble, m

\(k\) :

Thermal conductivity of sea ice, W/m·C

\({S}_{ur}\) :

The amount of salts in a vertical column of unconsolidated rubble, kg/m2

References

  • A. Ervik, K.V. Hoyland, A. Shestov, T.S. Nord, On the decay of first year ice ridges: Measurements and evolution of rubble macroporosity, ridge drilling resistance and consolidated layer strength. Cold. Reg. Sci. Techn. 151, 196–207 (2018)

    Article  Google Scholar 

  • G.E. Frankenstein, R. Garner, Equations for determining the brine volume of sea ice from −0.5 to −22.9ºC. J. Glaciol. 6(48), 943–944 (1967)

    Google Scholar 

  • J. Freitag, H. Eicken, Meltwater circulation and permeability of Arctic summer sea ice derived from hydrological field experiments. J. Glaciology 49(166), 349–358 (2003)

    Article  Google Scholar 

  • K.M. Golden, H. Eicken, A.L. Heaton, J. Miner, D.J. Pringle, J. Zhu, Thermal evolution of permeability and microstructure in Sea ice. Geoph. Res. Lett. 34, L16501 (2007)

    Article  Google Scholar 

  • V.V. Gorbatsky, A.V. Marchenko, On the influence of turbulence in ice adjacent layer on water-ice drag forces and heat fluxes in the Barents Sea. Recent development of Offshore Engineering in Cold Regions, in POAC-07, Dalian, China, June 27–30, 2007, ed by Yue (Dalian University Press, Dalian, 2007), pp. 648–659.

    Google Scholar 

  • Y.P. Gudoshnikov, G.K. Zubakin, A.K. Naumov, Morphological characteristics of ice formations of Pechora Sea by multiyear data of the field works, in Proceedings of the RAO-03 (St’Petersburg, Russia, 2003), pp. 295–299

    Google Scholar 

  • R.B. Guzenko, Y.U. Mironov, R.I. May, V.S. Porubayev, V.V. Kharitonov, S.V. Khotchenkov, K.A. Kornishin, Y.O. Efimov, P.A. Tarasov, Morphometry and internal structure of ice ridges in the Kara and Laptev Seas, in Proceeding of the Twenty-Ninth International Ocean And Polar Engineering Conference, Honolulu, Hawaii, USA (2019), pp. 647–654

    Google Scholar 

  • K.V. Hoyland, S. Loset, Measurements of temperature distribution, consolidation and morphology of a first-year sea ice ridge. Cold. Reg. Sci. Techn. 29, 59–74 (1999)

    Article  Google Scholar 

  • K.V. Hoyland, Consolidation of first-year sea ice ridges. J. Geophys. Res. 107(C6), 3062 (2002)

    Article  Google Scholar 

  • K.V. Hoyland, P. Liferov, On the initial phase of consolidation. Cold. Reg. Sci. Techn. 41, 49–59 (2005)

    Article  Google Scholar 

  • K.V. Hoyland, Morphology and small-scale strength of ridges in the North-western Barents Sea. Cold. Reg. Sci. Techn. 48, 169–187 (2007)

    Article  Google Scholar 

  • K.V. Hoyland, S. Barrault, S. Gerland, H. Goodwin, M. Nicolaus, O.M. Olsen, E. Rinne, The consolidation in second- and multi-year sea ice ridges Part I: Measurements in early winter, in Proceedings of 19th IAHR International Symposium on Ice, Vancouver, BC, Canada (2008), pp. 1439–1449

    Google Scholar 

  • V.V. Kharitonov, Internal structure of ice ridges and stamukhas based on thermal drilling data. Cold. Reg. Sci. Techn. 52, 302–325 (2008)

    Article  Google Scholar 

  • V.V. Kharitonov, Internal structure and porosity of ice ridges investigated at “North Pole-38” drifting station. Cold. Reg. Sci. Techn. 82, 144–152 (2012)

    Article  Google Scholar 

  • V.V. Kharitonov, On the results of studying ice ridges in the Shokal’skogo Strait, part II: porosity. Cold. Reg. Sci. Techn., 166, 102842 (2019)

    Google Scholar 

  • V Kovacs, Characteristics of multi-year pressure ridges, in Proceedings of POAC-83, Helsinki, Finland, vol. 2 (1983), 173–182

    Google Scholar 

  • M. Lepparanta, M. Lensu, P. Koslof, B. Veitch, The life story of a first-year sea ice ridge. Cold. Reg. Sci. Techn. 23, 279–290 (1995)

    Article  Google Scholar 

  • A. Marchenko, K. Hoyland, Properties of sea currents around ridged ice in the Barents Sea, in Proceedings of 19th IAHR International Symposium on Ice, Vancouver, BC, Canada (2008), pp. 1251–1262

    Google Scholar 

  • A. Marchenko, Thermodynamic consolidation and melting of sea ice ridges. Cold Reg. Sci. Techn. 52, 278–301 (2008)

    Article  Google Scholar 

  • N. Marchenko, A. Marchenko, Investigation of large ice rubble field in the Barents Sea. POAC17-097 (2017)

    Google Scholar 

  • A. Marchenko, Influence of the water temperature on thermodynamic consolidation of ice rubble, in Proceedings of the 24th IAHR International Symposium on Ice, Vladivostok, Russia (2018), p. 18-005.

    Google Scholar 

  • N. Marchenko, Ice at its southern limit in the Barents Sea: field investigation near Bear Island in April 2017–2018. POAC19-58 (2019)

    Google Scholar 

  • P.O. Moslet, Field testing of uniaxial compression strength of columnar sea ice. Cold Reg. Sci. Techn. 48, 1–14 (2007)

    Article  Google Scholar 

  • A.K. Naumov, E.A. Skutina, N.V. Golovin, N.V. Kubyshkin, I.V. Buzin, Y.P. Gudoshnikov, A.A. Skutin, in Proceeding of the Twenty-Ninth International Ocean and Polar Engineering Conference, Honolulu, Hawaii, USA (2019), pp. 684–690

    Google Scholar 

  • A.K. Peterson, I. Fer, M.G. McPhee, A. Randelhoff, Turbulent heat and momentum fluxes in the upper ocean under Arctic sea ice. J. Geophys. Res Ocean. 122, 1439–1456 (2017)

    Article  Google Scholar 

  • P. Schwerdtfeger, The thermal properties of sea ice. J. Claciol. 4(36), 789–807 (1963)

    Google Scholar 

  • A. Shestov, K.V. Høyland, O.C. Ekeberg, Morphology and physical properties of old sea ice in the Fram Strait 2006–2011, in Proceedings of the 21th International Symposium on Ice (IAHR), Dalian, China. Paper P052 (2012)

    Google Scholar 

  • A.S. Shestov, A.V. Marchenko, Thermodynamic consolidation of ice ridge keels in water at varying freezing points. Cold Reg. Sci. Techn. 121, 1–10 (2016)

    Article  Google Scholar 

  • A.S. Shestov, K.V. Høyland, Å. Ervik, Decay phase thermodynamic of ice ridges in the Arctic Ocean. Cold Reg. Sci. Technol. 152, 23–34 (2018)

    Article  Google Scholar 

  • J. Stefan, Uber die theorie der eisbildung, insbesondere uber die eisbildung in polararmeere. Ann. Phys. 42(2), 269–286 (1891)

    Article  Google Scholar 

  • L. Strub-Klein, S. Barrault, H. Goodwin, S. Gerland, Physical properties and comparison of first- and second-year sea ice ridges. POAC09-117 (2009)

    Google Scholar 

  • L. Strub-Klein, D. Sudom, A comprehensive analysis of the morphology of first-year sea ice ridges. Cold Reg. Sci. Techn. 82, 94–109 (2012)

    Article  Google Scholar 

  • G.M. Timco, R.P. Burden, An analysis of the shapes of sea ice ridges. Cold Reg. Sci. Techn. 25, 65–77 (1997)

    Article  Google Scholar 

  • G.K. Zubakin, Y.P. Gudoshnikov, A.K. Naumov, I.V. Stepanov, N.V. Kubyshkin, Peculiarities of the structure and properties of ice ridges in the Eastern Barents Sea based on the 2003 expedition data. Int. J. Offshore Polar Eng. 15(1), 28–33 (2005)

    Google Scholar 

Download references

Acknowledgements

The author wishes to acknowledge the support of the Research Council of Norway through the SFI SAMCoT and AOCEC (IntPart), and help of students of AT-211 course at UNIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Marchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marchenko, A. (2022). Thermo-Hydrodynamics of Sea Ice Rubble. In: Tuhkuri, J., Polojärvi, A. (eds) IUTAM Symposium on Physics and Mechanics of Sea Ice. IUTAM Bookseries, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-030-80439-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80439-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80438-1

  • Online ISBN: 978-3-030-80439-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics