Skip to main content

An Efficient One-Stage Detector for Real-Time Surgical Tools Detection in Robot-Assisted Surgery

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12722))

Included in the following conference series:

Abstract

Robot-assisted surgery (RAS) is a type of minimally invasive surgery which is completely different from the traditional surgery. RAS reduces surgeon’s fatigue and the number of doctors participating in surgery. At the same time, it causes less pain and has a faster recovery rate. Real-time surgical tools detection is important for computer-assisted surgery because the prerequisite for controlling surgical tools is to know the location of surgical tools. In order to achieve comparable performance, most Convolutional Neural Network (CNN) employed for detecting surgical tools generate a huge number of feature maps from expensive operation, which results in redundant computation and long inference time. In this paper, we propose an efficient and novel CNN architecture which generate ghost feature maps cheaply based on intrinsic feature maps. The proposed detector is more efficient and simpler than the state-of-the-art detectors. We believe the proposed method is the first to generate ghost feature maps for detecting surgical tools. Experimental results show that the proposed method achieves 91.6% mAP on the Cholec80-locations dataset and 100% mAP on the Endovis Challenge dataset with the detection speed of 38.5 fps, and realizes real-time and accurate surgical tools detection in the Laparoscopic surgery video.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi, B., Jo, K., Choi, S., Choi, J.: Surgical-tools detection based on convolutional neural network in laparoscopic robot-assisted surgery. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), vol. 2017, pp. 1756–1759 (2017)

    Google Scholar 

  2. Liu, Y., Zhao, Z., Chang, F., Hu, S.: An anchor-free convolutional neural network for real-time surgical tool detection in robot-assisted surgery. IEEE Access. PP(99), 1 (2020)

    Google Scholar 

  3. Twinanda, A.P., Shehata, S., Mutter, D., Marescaux, J., De Mathelin, M., Padoy, N.: Endonet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36(1), 86–97 (2017)

    Article  Google Scholar 

  4. Hajj, H.A., Lamard, M., Conze, P.H., Cochener, B., Quellec, G.: Monitoring tool usage in surgery videos using boosted convolutional and recurrent neural networks. Med. Image Anal. 47, 203–218 (2018)

    Article  Google Scholar 

  5. Sahu, M., Moerman, D., Mewes, P., Mountney, P., Rose, G.: Instrument state recognition and tracking for effective control of robotized laparoscopic systems. Int. J. Mech. Eng. Robot. Res. 5(1), 33–38 (2016)

    Google Scholar 

  6. Du, X., et al.: Combined 2D and 3D tracking of surgical instruments for minimally invasive and robotic-assisted surgery. Int. J. Comput. Assist. Radiol. Surg. 11(6), 1109–1119 (2016)

    Article  Google Scholar 

  7. Zhao, Z., Voros, S., Chen, Z., Cheng, X.: Surgical tool tracking based on two CNNs: from coarse to fine. The J. Eng. 2019(14), 467–472 (2019)

    Article  Google Scholar 

  8. Nwoye, C.I., Mutter, D., Marescaux, J., Padoy, N.: Weakly supervised convolutional lstm approach for tool tracking in laparoscopic videos. Int. J. Comput. Assist. Radiol. Surg. 14(6), 1059–1067 (2019)

    Article  Google Scholar 

  9. Garc´lła-Peraza-Herrera, L.C., et al.: Real-time segmentation of non-rigid surgical tools based on deep learning and tracking. In: International Workshop on Computer-Assisted and Robotic Endoscopy (2016)

    Google Scholar 

  10. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  11. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection (2020)

    Google Scholar 

  12. Shi, P., Zhao, Z., Hu, S., et al.: Real-time surgical tool detection in minimally invasive surgery based on attention-guided convolutional neural network. IEEE Access PP(99), 1–1 (2020)

    Google Scholar 

  13. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional neural networks. In: European Conference on Computer Vision (2013)

    Google Scholar 

  14. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C.: Ghostnet: more features from cheap operations. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  15. Liu, W., et al.: SSD: single shot multibox detector (2016)

    Google Scholar 

  16. Wang, C.Y., Liao, H.Y.M., Wu, Y.H., Chen, P.Y., Yeh, I.H.: CSPNet: a new backbone that can enhance learning capability of CNN. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2020)

    Google Scholar 

  17. Misra, D.: Mish: a self regularized non-monotonic activation function (2019)

    Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation (2015)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2014)

    Article  Google Scholar 

  20. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv e-prints (2018)

    Google Scholar 

  21. Zheng, Z., Wang, P., Liu, W., Li, J., Ren, D.: Distance-IoU loss: faster and better learning for bounding box regression. In: AAAI Conference on Artificial Intelligence (2020)

    Google Scholar 

  22. Du, X., et al.: Articulated multi-instrument 2-d pose estimation using fully convolutional networks. IEEE Trans. Med. Imaging 37(5), 1276–1287 (2018)

    Article  Google Scholar 

  23. Neubeck, A., Gool, L.J.V.: Efficient Non-Maximum Suppression (2006)

    Google Scholar 

  24. Rezatofighi, H., Tsoi, N., Gwak, J.Y., Sadeghian, A., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  25. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)

    Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Comput. Sci. (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijian Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Y., Zhao, Z., Shi, P., Hu, S. (2021). An Efficient One-Stage Detector for Real-Time Surgical Tools Detection in Robot-Assisted Surgery. In: PapieĹĽ, B.W., Yaqub, M., Jiao, J., Namburete, A.I.L., Noble, J.A. (eds) Medical Image Understanding and Analysis. MIUA 2021. Lecture Notes in Computer Science(), vol 12722. Springer, Cham. https://doi.org/10.1007/978-3-030-80432-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80432-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80431-2

  • Online ISBN: 978-3-030-80432-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics