Advertisement

Fast Automatic Bone Surface Segmentation in Ultrasound Images Without Machine Learning

Conference paper
  • 160 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12722)

Abstract

Reconstructing 3D bone images with 2D clinical ultrasound image is one of the primary developmental trends of computer-assisted orthopaedic surgery procedures, and real-time bone segmentation is required for such development. We previously presented a dynamic programming method with local phase tensor extraction for bone structure segmentation that could process one ultrasound frame with a true positive ratio of 71% in approximately 1 s. The present study aimed to reduce the segmentation time to enable real-time computational capacity for clinical application developments. A simplified bone probability algorithm was optimised by systematically identifying and removing the components which cost most computing resources. The segmentation results produced by the bone probability method were compared to the local phase method, and manual segmentation carried out by clinical experts. The proposed method had higher recall metric (0.67) than the local phase method (0.61), while the computational time is reduced to 0.02 s per image. However, the bone probability method did not perform as well as the local phase method in specificity and precision metrics. In conclusion, the simplified version of the segmentation algorithm improved computational speed and promised an advantage in further real time application developments, but additional functions that can improve accuracy and further extensive validations are still required before further clinical application developments.

Keywords

Bone segmentation Ultrasound imaging Bone probability map 

References

  1. 1.
    Alsinan, A.Z., Patel, V.M., Hacihaliloglu, I.: Automatic segmentation of bone surfaces from ultrasound using a filter-layer-guided CNN. Int. J. Comput. Assist. Radiol. Surg. 14(5), 775–783 (2019).  https://doi.org/10.1007/s11548-019-01934-0CrossRefGoogle Scholar
  2. 2.
    Alsinan, A.Z., Patel, V.M., Hacihaliloglu, I.: Bone shadow segmentation from ultrasound data for orthopedic surgery using GAN. Int. J. Comput. Assist. Radiol. Surg. 15(9), 1477–1485 (2020).  https://doi.org/10.1007/s11548-020-02221-zCrossRefGoogle Scholar
  3. 3.
    Amiri, M., Brooks, R., Behboodi, B., Rivaz, H.: Two-stage ultrasound image segmentation using U-Net and test time augmentation. Int. J. Comput. Assist. Radiol. Surg. 15(6), 981–988 (2020).  https://doi.org/10.1007/s11548-020-02158-3CrossRefGoogle Scholar
  4. 4.
    Foroughi, P., Boctor, E., Swartz, M.J., Taylor, R.H., Fichtinger, G.: P6d–2 ultrasound bone segmentation using dynamic programming. In: 2007 IEEE Ultra Sonics Symposium Proceedings, pp. 2523–2526. IEEE (2007).  https://doi.org/10.1109/ULTSYM.2007.635
  5. 5.
    Jia, R., Mellon, S.J., Hansjee, S., Monk, A.P., Murray, D.W., Noble, J.A.: Automatic bone segmentation in ultrasound images using local phase features and dynamic programming. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1005–1008 (2016).  https://doi.org/10.1109/ISBI.2016.7493435
  6. 6.
    Jia, R., Monk, A.P., Murray, D.W., Mellon, S.J., Noble, J.A.: Greater trochanter tracking in ultrasound imaging during gait. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 260–263 (2015).  https://doi.org/10.1109/ISBI.2015.7163863
  7. 7.
    Jia, R., Mellon, S., Monk, P., Murray, D., Noble, A.: Globally optimal registration for describing joint kinematics. Procedia Comput. Sci. 90, 188–193 (2016).  https://doi.org/10.1016/j.procs.2016.07.016, 20th Conference on Medical Image Understanding and Analysis (MIUA 2016)
  8. 8.
    Jia, R., Mellon, S., Monk, P., Murray, D., Noble, J.A.: A computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system for the description of hip joint kinematics. Int. J. Comput. Assist. Radiol. Surg. 11(11), 1965–1977 (2016).  https://doi.org/10.1007/s11548-016-1443-yCrossRefGoogle Scholar
  9. 9.
    Jia, R., Monk, P., Murray, D., Noble, J.A., Mellon, S.: Cat & maus: a novel system for true dynamic motion measurement of underlying bony structures with compensation for soft tissue movement. J. Biomech. 62, 156–164 (2017).  https://doi.org/10.1016/j.jbiomech.2017.04.015CrossRefGoogle Scholar
  10. 10.
    Monk, A.P., et al.: Measurement of in-vivo patella kinematics using motion analysis and ultrasound (maus). In: 2013 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 257–260 (2013).  https://doi.org/10.1109/MeMeA.2013.6549747
  11. 11.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  12. 12.
    Salehi, M., Prevost, R., Moctezuma, J.-L., Navab, N., Wein, W.: Precise ultrasound bone registration with learning-based segmentation and speed of sound calibration. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 682–690. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66185-8_77CrossRefGoogle Scholar
  13. 13.
    Smistad, E., Falch, T.L., Bozorgi, M., Elster, A.C., Lindseth, F.: Medical image segmentation on GPUs: A comprehensive review. Med. Image Anal. 20(1), 1 – 18 (2015).  https://doi.org/10.1016/j.media.2014.10.012, https://www.sciencedirect.com/science/article/pii/S1361841514001819
  14. 14.
    Villa, M., Dardenne, G., Nasan, M., Letissier, H., Hamitouche, C., Stindel, E.: FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images. Int. J. Comput. Assist. Radiol. Surg. 13(11), 1707–1716 (2018).  https://doi.org/10.1007/s11548-018-1856-xCrossRefGoogle Scholar
  15. 15.
    Wang, P., Patel, V.M., Hacihaliloglu, I.: Simultaneous segmentation and classification of bone surfaces from ultrasound using a multi-feature guided CNN. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 134–142. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00937-3_16CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Oxford Orthopaedic Engineering Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUK
  2. 2.Department of Computer ScienceUniversity of HuddersfieldHuddersfieldUK

Personalised recommendations