Reproducibility of Retinal Vascular Phenotypes Obtained with Optical Coherence Tomography Angiography: Importance of Vessel Segmentation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12722)


Optical coherence tomography angiography (OCTA) is a non-invasive imaging method that can visualize the finest vascular networks in the human retina. OCTA image analysis has been successfully applied to the investigation of retinal vascular diseases of the eye and other systemic conditions that may manifest in the eye. To characterize and distinguish OCTA images from different pathologies, it is important to identify quantitative metrics and phenotypes that have high reproducibility and are not overly susceptible to the effects of imaging artifacts. This paper demonstrates the reproducibility of several recently demonstrated candidate OCTA quantitative metrics: mean curvature and tortuosity of the whole, foveal, superior, nasal, inferior, and temporal regions; foveal and parafoveal vessel skeleton density; and finally, foveal avascular zone area and acircularity index. This paper also highlights the importance of vessel segmentation choice on reproducibility using two different segmentation methods: optimally oriented flux and Frangi filter.


OCTA imaging Retinal vascular phenotype Reproducibility 



DR and YG were supported by two Medical Research Council Precision Medicine Doctoral Training Programme scholarships (MR/N013166/1). MOB is supported by grants from EPSRC (EP/R029598/1, EP/T008806/1), Fondation Leducq (17 CVD 03), the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 801423, and British Heart Foundation/The Alan Turing Institute under a Cardiovascular Data Science Award. TJM and MOB acknowledge the funders of the SCONe project ( This project was supported in part by the Alzheimer’s Drug Discovery Foundation and the Heed Foundation (SC) and the VitreoRetinal Surgery Foundation (SC).


  1. 1.
    Bulut, M., et al.: Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia. Br. J. Ophthalmol. 102(2), 233–237 (2018). Scholar
  2. 2.
    Corvi, F., Pellegrini, M., Erba, S., Cozzi, M., Staurenghi, G., Giani, A.: Reproducibility of vessel density, fractal dimension, and foveal avascular zone using 7 different optical coherence tomography angiography devices. Br. J. Ophthalmol. 186, 25–31 (2018)Google Scholar
  3. 3.
    Decencière, E., et al.: Feedback on a publicly distributed image database: the messidor database. Image Anal. Stereology 33(3), 231–234 (2014)CrossRefGoogle Scholar
  4. 4.
    Giarratano, Y., et al.: Automated segmentation of optical coherence tomography angiography images: benchmark data and clinically relevant metrics. Transl. Vis. Sci. Technol. 9(13), 5 (2020)CrossRefGoogle Scholar
  5. 5.
    Giarratano, Y., et al.: A framework for the discovery of retinal biomarkers in optical coherence tomography angiography (OCTA). In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds.) OMIA 2020. LNCS, vol. 12069, pp. 155–164. Springer, Cham (2020). Scholar
  6. 6.
    Hagag, A.M., Gao, S.S., Jia, Y., Huang, D.: Optical coherence tomography angiography: technical principles and clinical applications in ophthalmology. Taiwan J. Ophthalmol. 7(3), 115 (2017)CrossRefGoogle Scholar
  7. 7.
    Hart, W.E., Goldbaum, M., Côté, B., Kube, P., Nelson, M.R.: Measurement and classification of retinal vascular tortuosity. Int. J. Med. Informatics 53(2–3), 239–252 (1999). Scholar
  8. 8.
    Kim, A.Y., Chu, Z., Shahidzadeh, A., Wang, R.K., Puliafito, C.A., Kashani, A.H.: Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest. Ophthalmol. Vis. Sci. 57(9), OCT362-OCT370 (2016).
  9. 9.
    Kwon, J., Choi, J., Shin, J.W., Lee, J., Kook, M.S.: Alterations of the foveal avascular zone measured by optical coherence tomography angiography in glaucoma patients with central visual field defects. Invest. Ophthalmol. Vis. Sci. 58(3), 1637–1645 (2017)CrossRefGoogle Scholar
  10. 10.
    La Spina, C., Carnevali, A., Marchese, A., Querques, G., Bandello, F.: Reproducibility and reliability of optical coherence tomography angiography for foveal avascular zone evaluation and measurement in different settings. Retina 37(9), 1636–1641 (2017)CrossRefGoogle Scholar
  11. 11.
    Lavia, C., Couturier, A., Erginay, A., Dupas, B., Tadayoni, R., Gaudric, A.: Reduced vessel density in the superficial and deep plexuses in diabetic retinopathy is associated with structural changes in corresponding retinal layers. PloS ONE 14(7), e0219164 (2019)CrossRefGoogle Scholar
  12. 12.
    Law, M.W.K., Chung, A.C.S.: Three dimensional curvilinear structure detection using optimally oriented flux. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 368–382. Springer, Heidelberg (2008). Scholar
  13. 13.
    Lei, J., et al.: Repeatability and reproducibility of superficial macular retinal vessel density measurements using optical coherence tomography angiography en face images. JAMA Ophthalmol. 135(10), 1092–1098 (2017).
  14. 14.
    Li, A., You, J., Du, C., Pan, Y.: Automated segmentation and quantification of OCT angiography for tracking angiogenesis progression. Biomed. Opt. Express 8(12), 5604 (2017). Scholar
  15. 15.
    Li, M., et al.: Ipn-v2 and octa-500: Methodology and dataset for retinal image segmentation. arXiv preprint arXiv:2012.07261 (2020)
  16. 16.
    Ma, Y., et al.: Rose: a retinal oct-angiography vessel segmentation dataset and new model. IEEE Trans. Med. Imaging 40(3), 928–939 (2021). Scholar
  17. 17.
    Mookiah, M.R.K., et al.: A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification. Med. Image Anal. 68, 101905 (2020)Google Scholar
  18. 18.
    Rosenfeld, P.J., et al.: Zeiss angioplex\(^{\rm TM}\) spectral domain optical coherence tomography angiography: technical aspects. OCT Angiography Retinal Macular Dis. 56, 18–29 (2016)CrossRefGoogle Scholar
  19. 19.
    Schneider, S., Sbalzarini, I.F.: Finding faces in a planar embedding of a graph. Technical Report, MOSAIC Group, MPI-CBG (2015)Google Scholar
  20. 20.
    Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)CrossRefGoogle Scholar
  21. 21.
    Takase, N., Nozaki, M., Kato, A., Ozeki, H., Yoshida, M., Ogura, Y.: Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 35(11), 2377–2383 (2015)CrossRefGoogle Scholar
  22. 22.
    Van De Kreeke, J.A., et al.: Optical coherence tomography angiography in preclinical Alzheimer’s disease. Br. J. Ophthalmol. 157–161 (2019).
  23. 23.
    Wagner, S.K., et al.: Insights into systemic disease through retinal imaging-based oculomics. Transl. Vis. Sci. Technol. 9(2), 6 (2020),
  24. 24.
    Yoon, S.P., et al.: Retinal microvascular and neurodegenerative changes in alzheimer’s disease and mild cognitive impairment compared with control participants. Ophthalmol. Retina 3(6), 489–499 (2019)CrossRefGoogle Scholar
  25. 25.
    Zhang, M., Hwang, T.S., Dongye, C., Wilson, D.J., Huang, D., Jia, Y.: Automated quantification of nonperfusion in three retinal plexuses using projection-resolved optical coherence tomography angiography in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 57(13), 5101–5106 (2016). Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Centre for Medical Informatics, Usher InstituteThe University of EdinburghEdinburghScotland
  2. 2.Edinburgh Clinical Research Facility and Edinburgh ImagingUniversity of EdinburghEdinburghScotland
  3. 3.Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghScotland
  4. 4.Department of OphthalmologyDuke University School of MedicineDurhamUSA

Personalised recommendations