Advertisement

A Simulation Study to Estimate Optimum LOR Angular Acceptance for the Image Reconstruction with the Total-Body J-PET

Conference paper
  • 150 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12722)

Abstract

One of the directions in today’s development of PET scanners is to increase their axial field of view (AFOV). Currently limited to several centimeters, AFOV of the clinically available PET tomographs results in a very low sensitivity (\(\sim \)1%) and requires an extended time for a scan of a whole human body. While these drawbacks are addressed in the so-called, Total Body PET concept (scanner with a significantly elongated field of view), it creates new challenges not only in the mechanical construction but also in the image reconstruction and event selection. The possibility of taking into account of large angle variety of lines of responses (LORs) contributes positively to the sensitivity of the tomograph. However, at the same time, the most oblique LORs have an unfavorable influence on the spatial resolution due to the parallax error and large contribution to the scatter fraction. This forces to determine a new factor - acceptance angle - which is a maximum azimuthal angle for which the LORs are still taken into image reconstruction. Correct determination of such factor is imperative to maximize the performance of a Total Body PET system since it introduces a trade-off between the two main characteristics of scanners: sensitivity and spatial resolution.

This work has been dedicated to the estimation of the optimal acceptance angle for the proposed by the Jagiellonian PET (J-PET) Collaboration Total Body tomograph. J-PET Collaboration introduces a novel, cost-effective approach to PET systems development with the use of organic scintillators. This simulation study provides evidence that the 45\(^{\circ }\) acceptance angle cut can be an appropriate choice for the investigated scanner.

Keywords

Acceptance angle Total Body J-PET Sensitivity Spatial resolution 

Notes

Acknowledgment

This work was supported by Foundation for Polish Science through TEAM POIR.04.04. 00-00-4204/17, the National Science Centre, Poland (NCN) through grant No. 2019/35/B/ST2/03562 and grant PRELUDIUM 19, agreement No. UMO-2020/37/N/NZ7/04106.

The publication also has been supported by a grant from the SciMat Priority Research Area under the Strategic Programme Excellence Initiative at the Jagiellonian University.

References

  1. 1.
    Schaefferkoetter, J., Townsend, D.: A human-trained numerical observer model for PET lesion detection tasks. In: IEEE Nuclear Science Symposium and Medical Imaging Conference 2015, vol. 9999, pp. 1–3. San Diego, C (2015).  https://doi.org/10.1109/NSSMIC.2015.7582063
  2. 2.
    Vandenberghe, S., Moskal, P., Karp, J.S.: State of the art in total body PET. EJNMMI Phys. 7(1), 1–33 (2020).  https://doi.org/10.1186/s40658-020-00290-2CrossRefGoogle Scholar
  3. 3.
    Cherry, S.: Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J. Nucl. Med. 59(1), 3–12 (2018)Google Scholar
  4. 4.
    uEXPLORER Homepage. http://www.explorer.ucdavis.edu. Accessed 13 Mar 2021
  5. 5.
    Badawi, R., Shi, H., Hu, P., et al.: First human imaging studies with the EXPLORER total-body pet scanner. J. Nucl. Med. 60(3), 299–303 (2019)Google Scholar
  6. 6.
    Vandenberghe, S., Geagan, M., Efthimiou, N.: PET2020 HRS: maximization of sensitivity and resolution using axial extension and patient adaptive rings in a high resolution long axial FOV scanner. In: European Journal of Nuclear Medicine and Molecular Imaging, vol. 46, p. 274 (2019)Google Scholar
  7. 7.
  8. 8.
    J-PET Homepage. http://www.koza.if.uj.edu.pl/pet/. Accessed 13 Mar 2021
  9. 9.
    Moskal, P., Stępień, E.: Prospects and clinical perspectives of total-body PET imaging using plastic scintillators. PET Clin. 15(4), 439–452 (2020)Google Scholar
  10. 10.
    Moskal, P., Jasińska, B., Stępień, E.: Positronium in medicine and biology. Nat. Rev. Phys. 1, 527–529 (2019)Google Scholar
  11. 11.
    Moskal, P., Rundel, O., Alfs, D., et al.: Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph. Phys. Med. Biol. 61(5), 2025–2047 (2016)Google Scholar
  12. 12.
    Karakatsanis, N., Fokou, E., Tsoumpas, C.: Dosage optimization in positron emission tomography: state-of-the-art methods and future prospects. Am. J. Nucl. Med. Mol. Imag. 5(5), 527–547 (2015)Google Scholar
  13. 13.
    Efthimiou, N.: New challenges for PET image reconstruction for total-body imaging. PET Clin. 15(4), 453–461 (2020)Google Scholar
  14. 14.
    Moskal, P., Niedźwiecki, S., Bednarski, T., et al.: Test of a single module of the J-PET scanner based on plastic scintillators. Nucl. Instr. Meth. A. 764, 317–321 (2014)Google Scholar
  15. 15.
    Moskal, P., Kisielewska, D., et al.: Feasibility study of the positronium imaging with the J-PET tomograph. Phys. Med. Biol. 64 (2019)Google Scholar
  16. 16.
    Moskal, P., Kisielewska, D., et al.: Performance assessment of the 2 \(\gamma \) positronium imaging with the total-body PET scanners. EJNMMI Phys. 7, 44 (2020)Google Scholar
  17. 17.
    Sharma, S., Chhokar, J., et al.: Estimating relationship between the Time Over Threshold and energy loss by photons in plastic scintillators used in the J-PET scanner. EJNMMI Phys. 7, 39 (2020)Google Scholar
  18. 18.
    Moskal, P., Krawczyk, N., Hiesmayr, B.C., et al.: Feasibility studies of the polarization of photons beyond the optical wavelength regime with the J-PET detector. Eur. Phys. J. C. 78(11), 970–980 (2018)Google Scholar
  19. 19.
    Moskal, P., Salabura, P., Silarski, M., et al.: Novel detector systems for the positron emission tomography. Bio-Algo. Med. Syst. 7(2), 73–78 (2011)Google Scholar
  20. 20.
    Kopka, P., Klimaszewski, K.: Reconstruction of the NEAM IEX body phantom from J-PET total-body scanner simulation using STIR. Acta Phys. Pol. B. 51, 357–360 (2020)Google Scholar
  21. 21.
    Zhu, Y.M.: Ordered subset expectation maximization algorithm for positron emission tomographic image reconstruction using belief kernels. J. Med. Imag. (Bellingham, Wash.) 5(4), 044005 (2018)Google Scholar
  22. 22.
    Jan, S., Santin, G., Strul, D., et al.: GATE: a simulation toolkit for PET and SPECT. Phys. Med. Biol. 49(19), 4543–4561 (2004)Google Scholar
  23. 23.
    Santin, J., Benoit, D., Becheva, E., et al.: GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys. Med. Biol. 56(4), 881–901 (2016)Google Scholar
  24. 24.
    Sarrut, D., BardiÃÍs, M., Boussion, N., et al.: A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Med. Phys. 41(6), 064301 (2014)Google Scholar
  25. 25.
    Smyrski, J., Alfs, D., Bednarski, T., et al.: Measurement of gamma quantum interaction point in plastic scintillator with WLS strips. Nucl. Instrum. Methods Phys. Res. A 851(5), 39–42 (2017)Google Scholar
  26. 26.
    Dadgar, M., Kowalski, P.: GATE simulation study of the 24-module J-PET scanner: data analysis and image reconstruction. Acta Phys. Pol. B 51, 309–320 (2020). PolandGoogle Scholar
  27. 27.
    Kowalski, P., Wiślicki, W., Raczyński, L., et al.: Scatter fraction of the J-PET tomography scanner. Acta Phys. Pol. B 47(2), 549–560 (2016)Google Scholar
  28. 28.
    Medisip Homepage. https://www.ugent.be/ea/ibitech/en/research/medisip. Accessed 13 Mar 2021
  29. 29.
  30. 30.
    Cherry, S., et al.: Abstracts of the SPET conference 2018, pp. 1–2. EJNMMI, Ghent, Belgium (2018)Google Scholar
  31. 31.
    Zhang, X., Xie, Z., Berg, E., et al.: Total-body dynamic reconstruction and parametric imaging on the uEXPLORER. J. Nucl. Med. 61(2), 285–291 (2019)Google Scholar
  32. 32.
    Kowalski, P., Wiślicki, W., Shopa, R., et al.: Estimating the NEMA characteristics of the J-PET tomograph using the GATE package. Phys. Med. Biol. 63(16), 99–110 (2018)Google Scholar
  33. 33.
  34. 34.
    Pawlik-Niedźwiecki, M., Niedźwiecki, S., Alfs, D., et al.: Preliminary studies of J-PET detector spatial resolution. Acta Phys. Pol. A 132(5), 1645–1648 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Marian Smoluchowski Institute of PhysicsJagiellonian UniversityKrakówPoland
  2. 2.Total-Body Jagiellonian-PET LaboratoryJagiellonian UniversityKrakówPoland

Personalised recommendations