Skip to main content

Automated Summary Scoring with ReaderBench

  • Conference paper
  • First Online:
Intelligent Tutoring Systems (ITS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12677))

Included in the following conference series:

Abstract

Text summarization is an effective reading comprehension strategy. However, summary evaluation is complex and must account for various factors including the summary and the reference text. This study examines a corpus of approximately 3,000 summaries based on 87 reference texts, with each summary being manually scored on a 4-point Likert scale. Machine learning models leveraging Natural Language Processing (NLP) techniques were trained to predict the extent to which summaries capture the main idea of the target text. The NLP models combined both domain and language independent textual complexity indices from the ReaderBench framework, as well as state-of-the-art language models and deep learning architectures to provide semantic contextualization. The models achieve low errors – normalized MAE ranging from 0.13–0.17 with corresponding R2 values of up to 0.46. Our approach consistently outperforms baselines that use TF-IDF vectors and linear models, as well as Transfomer-based regression using BERT. These results indicate that NLP algorithms that combine linguistic and semantic indices are accurate and robust, while ensuring generalizability to a wide array of topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding (2018). arXiv preprint: arXiv:1810.04805

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  3. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Roscoe, R.D., Varner, L.K., Crossley, S.A., McNamara, D.S.: Developing pedagogically-guided algorithms for intelligent writing feedback. Int. J. Learn. Technol. 25, 8(4), 362–381 (2013)

    Google Scholar 

  5. Attali, Y., Burstein, J.: Automated essay scoring with e-rater V.2.0. In: Annual Meeting of the International Association for Educational Assessment, p. 23. Association for Educational Assessment, Philadelphia (2004)

    Google Scholar 

  6. Tay, Y., Phan, M.C., Tuan, L.A., Hui, S.C.: SkipFlow: Incorporating neural coherence features for end-to-end automatic text scoring. In: Thirty-Second AAAI Conference on Artificial Intelligence. AAAI, New Orleans (2018)

    Google Scholar 

  7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  8. Alikaniotis, D., Yannakoudakis, H., Rei, M.: Automatic text scoring using neural networks (2016). arXiv preprint: arXiv:1606.04289

  9. Taghipour, K., Ng, H.T.: A neural approach to automated essay scoring. In: EMLP, pp. 1882–1891. ACL, Austin (2016)

    Google Scholar 

  10. Jin, C., He, B., Hui, K., Sun, L.: TDNN: a two-stage deep neural network for prompt-independent automated essay scoring. In: 56th Annual Meeting of the ACL Vol. 1: Long Papers, pp. 1088–1097. ACL, Melbourne (2018)

    Google Scholar 

  11. Dascalu, M., Dessus, P., Bianco, M., Trausan-Matu, S., Nardy, A.: Mining texts, learner productions and strategies with ReaderBench. In: Peña-Ayala, A. (ed.) Educational Data Mining: Applications and Trends, pp. 345–377. Springer, Cham (2014)

    Chapter  Google Scholar 

  12. Dascalu, M., McNamara, D.S., Trausan-Matu, S., Allen, L.K.: Cohesion network analysis of CSCL participation. Behav. Res. Methods 50(2), 604–619 (2018)

    Article  Google Scholar 

  13. Ramos, J.: Using TF-IDF to determine word relevance in document queries. In: 1st Instructional Conference on Machine Learning, vol. 242, pp. 133–142. ACM, Piscataway (2003)

    Google Scholar 

  14. Craney, T.A., Surles, J.G.: Model-dependent variance inflation factor cutoff values. Qual. Eng. 14(3), 391–403 (2002)

    Article  Google Scholar 

  15. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

    Google Scholar 

  16. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015). arXiv preprint: arXiv:1502.03167

  17. Dahl, G.E., Sainath, T.N., Hinton, G.E.: Improving deep neural networks for LVCSR using rectified linear units and dropout. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8609–8613. IEEE, Vancouver (2013)

    Google Scholar 

  18. Smith, L.N.: A disciplined approach to neural network hyper-parameters: Part 1–learning rate, batch size, momentum, and weight decay (2018). arXiv preprint: arXiv:1803.09820

  19. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks (2017). arXiv preprint: arXiv:1703.01365

Download references

Acknowledgments

The work was funded by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS – UEFISCDI, project number TE 70 PN-III-P1-1.1-TE-2019-2209, ATES – “Automated Text Evaluation and Simplification”. This research was also supported in part by the Institute of Education Sciences (R305A190063) and the Office of Naval Research (N00014-17-1-2300 and N00014-19-1-2424). The opinions expressed are those of the authors and do not represent views of the IES or ONR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Dascalu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Botarleanu, RM., Dascalu, M., Allen, L.K., Crossley, S.A., McNamara, D.S. (2021). Automated Summary Scoring with ReaderBench. In: Cristea, A.I., Troussas, C. (eds) Intelligent Tutoring Systems. ITS 2021. Lecture Notes in Computer Science(), vol 12677. Springer, Cham. https://doi.org/10.1007/978-3-030-80421-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80421-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80420-6

  • Online ISBN: 978-3-030-80421-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics