Clinical knowledge graph integrates proteomics data into clinical decision-making. bioRxiv (2020)
Google Scholar
Regulation (eu) 2016/679 of the European parliamentand of the council of 27 April 2016 on the protectionof natural persons with regard to the processing of personal data and on the free movement of such data, andrepealing directive 95/46/ec (general data protectionregulation). Official Journal of the European Union, L119, May 2016. https://eur-lex.europa.eu/eli/reg/2016/679/oj
Akhtar, S.M., Nazir, M., Saleem, K., Haque, H.M.U., Hussain, I.: An ontology-driven IoT based healthcare formalism. Int. J. Adv. Comput. Sci. Appl. 11(2), 479–486 (2020)
Google Scholar
Ali, N., Hong, J.E.: Failure detection and prevention for cyber-physical systems using ontology-based knowledge base. Computers 7(4), 68 (2018)
CrossRef
Google Scholar
Antanas, L., et al.: Semantic and geometric reasoning for robotic grasping: a probabilistic logic approach. Auton. Robot. 43(6), 1393–1418 (2018). https://doi.org/10.1007/s10514-018-9784-8
CrossRef
Google Scholar
Antunes, F., Freire, M., Costa, J.P.: Semantic web tools and decision-making. In: Zaraté, P., Kersten, G.E., Hernández, J.E. (eds.) GDN 2014. LNBIP, vol. 180, pp. 270–277. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07179-4_31
CrossRef
Google Scholar
Bellamy, R.K., et al.: Think your artificial intelligence software is fair? Think again. IEEE Softw. 36(4), 76–80 (2019)
CrossRef
Google Scholar
Bellomarini, L., Sallinger, E., Vahdati, S.: Chapter 6 reasoning in knowledge graphs: an embeddings spotlight. In: Janev, V., Graux, D., Jabeen, H., Sallinger, E. (eds.) Knowledge Graphs and Big Data Processing. LNCS, vol. 12072, pp. 87–101. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53199-7_6
CrossRef
Google Scholar
Bohanec, M.: Decision making: a computer-science and information-technology viewpoint. Interdisc. Descrip. Complex Syst. Sci. J. 7, 22–37 (2009)
Google Scholar
Bonatti, P.A., Decker, S., Polleres, A., Presutti, V.: Knowledge graphs: new directions for knowledge representation on the semantic web (dagstuhl seminar 18371). In: Dagstuhl Reports vol. 8. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)
Google Scholar
Das, S.K., Swain, A.K.: An ontology-based framework for decision support in assembly variant design. J. Comput. Inf. Sci. Eng. 21(2), 021007 (2021)
Google Scholar
Davari, M., Bertino, E.: Access control model extensions to support data privacy protection based on GDPR. In: IEEE International Conference on Big Data (Big Data), pp. 4017–4024 (2019). https://doi.org/10.1109/BigData47090.2019.9006455
Dehury, C.K., Srirama, S.N., Chhetri, T.R.: CCoDaMiC: a framework for coherent coordination of data migration and computation platforms. Futur. Gener. Comput. Syst. 109, 1–16 (2020)
CrossRef
Google Scholar
Dubrova, E.: Fault-Tolerant Design. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-2113-9
CrossRef
MATH
Google Scholar
D’Aniello, G., Gaeta, M., Orciuoli, F.: An approach based on semantic stream reasoning to support decision processes in smart cities. Telematics Inform. 35(1), 68–81 (2018)
CrossRef
Google Scholar
Futia, G., Melandri, A., Vetrò, A., Morando, F., De Martin, J.C.: Removing barriers to transparency: a case study on the use of semantic technologies to tackle procurement data inconsistency. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 623–637. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58068-5_38
CrossRef
Google Scholar
Hedberg, T., Barnard Feeney, A., Camelio, J.: Toward a diagnostic and prognostic method for knowledge-driven decision-making in smart manufacturing technologies. In: Madni, A.M., Boehm, B., Ghanem, R.G., Erwin, D., Wheaton, M.J. (eds.) Disciplinary Convergence in Systems Engineering Research, pp. 859–873. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-62217-0_60
CrossRef
Google Scholar
Horrocks, I., Giese, M., Kharlamov, E., Waaler, A.: Using semantic technology to tame the data variety challenge. IEEE Internet Comput. 20(6), 62–66 (2016)
CrossRef
Google Scholar
Jaiman, V., Urovi, V.: A consent model for blockchain-based health data sharing platforms. IEEE Access 8, 143734–143745 (2020). https://doi.org/10.1109/ACCESS.2020.3014565
CrossRef
Google Scholar
Karray, M.H., Chebel-Morello, B., Zerhouni, N.: A formal ontology for industrial maintenance. Appl. Ontol. 7(3), 269–310 (2012)
CrossRef
Google Scholar
Lai, P., Phan, N., Hu, H., Badeti, A., Newman, D., Dou, D.: Ontology-based interpretable machine learning for textual data. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–10. IEEE (2020)
Google Scholar
Lecue, F.: On the role of knowledge graphs in explainable AI. Semantic Web (Preprint), 1–11 (2019)
Google Scholar
Mahindrakar, A., Joshi, K.P., et al.: Automating GDPR compliance using policy integrated blockchain. In: IEEE 6th International Conference on Big Data Security on Cloud (BigDataSecurity 2020) (2020). https://doi.org/10.1109/BigDataSecurity-HPSC-IDS49724.2020.00026
Nie, K., Zeng, K., Meng, Q.: Knowledge reasoning method for military decision support knowledge graph mixing rule and graph neural networks learning together. In: 2020 Chinese Automation Congress (CAC), pp. 4013–4018. IEEE (2020)
Google Scholar
Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale knowledge graphs: lessons and challenges. Queue 17(2), 48–75 (2019)
CrossRef
Google Scholar
Osoba, O.A., Welser, W., IV.: An intelligence in Our Image: The Risks of Bias and Errors in Artificial Intelligence. Rand Corporation (2017)
Google Scholar
Panasiuk, O., Steyskal, S., Havur, G., Fensel, A., Kirrane, S.: Modeling and reasoning over data licenses. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 11155, pp. 218–222. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98192-5_41
CrossRef
Google Scholar
Panigutti, C., Perotti, A., Pedreschi, D.: Doctor XAI: an ontology-based approach to black-box sequential data classification explanations. In: Proceedings of the 2020 Conference On Fairness, Accountability, and Transparency, pp. 629–639 (2020)
Google Scholar
Pease, S.G., et al.: An interoperable semantic service toolset with domain ontology for automated decision support in the end-of-life domain. Futur. Gener. Comput. Syst. 112, 848–858 (2020)
CrossRef
Google Scholar
Power, D.J., Sharda, R.: Model-driven decision support systems: concepts and research directions. Decis. Support Syst. 43(3), 1044–1061 (2007)
CrossRef
Google Scholar
Rahman, H., Hussain, M.I.: A comprehensive survey on semantic interoperability for internet of things: state-of-the-art and research challenges. Trans. Emerg. Telecommun. Technol. 31(12), e3902 (2020)
Google Scholar
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intell. 1(5), 206–215 (2019)
CrossRef
Google Scholar
Samizadeh Nikoui, T., Rahmani, A.M., Balador, A., Haj Seyyed Javadi, H.: Internet of things architecture challenges: a systematic review. Int. J. Commun. Syst. 34(4), e4678 (2021)
Google Scholar
Sovrano, F., Vitali, F., Palmirani, M.: Modelling GDPR-compliant explanations for trustworthy AI. In: Kő, A., Francesconi, E., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) EGOVIS 2020. LNCS, vol. 12394, pp. 219–233. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58957-8_16
CrossRef
Google Scholar
Spoladore, D., Sacco, M.: Semantic and dweller-based decision support system for the reconfiguration of domestic environments: Recaal. Electronics 7(9), 179 (2018)
CrossRef
Google Scholar
Tachmazidis, I., Davies, J., Batsakis, S., Antoniou, G., Duke, A., Stincic Clarke, S.: Hypercat RDF: semantic enrichment for IoT. In: Li, Y.-F., et al. (eds.) JIST 2016. LNCS, vol. 10055, pp. 273–286. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50112-3_21
CrossRef
Google Scholar
Tao, M., Ota, K., Dong, M.: Ontology-based data semantic management and application in IoT-and cloud-enabled smart homes. Futur. Gener. Comput. Syst. 76, 528–539 (2017)
CrossRef
Google Scholar
Vasileva, M.I.: The dark side of machine learning algorithms: how and why they can leverage bias, and what can be done to pursue algorithmic fairness. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3586–3587 (2020)
Google Scholar
Wan, G., Pan, S., Gong, C., Zhou, C., Haffari, G.: Reasoning like human: hierarchical reinforcement learning for knowledge graph reasoning. In: International Joint Conference on Artificial Intelligence 2020, pp. 1926–1932. Association for the Advancement of Artificial Intelligence (AAAI) (2020)
Google Scholar
Wang, H., Zhao, M., Xie, X., Li, W., Guo, M.: Knowledge graph convolutional networks for recommender systems. In: The World Wide Web Conference, pp. 3307–3313 (2019)
Google Scholar
Wang, Q., Hao, Y., Cao, J.: ADRL: an attention-based deep reinforcement learning framework for knowledge graph reasoning. Knowl. Based Syst. 197, 105910 (2020)
Google Scholar
Wang, Z., Chen, T., Ren, J., Yu, W., Cheng, H., Lin, L.: Deep reasoning with knowledge graph for social relationship understanding. arXiv preprint arXiv:1807.00504 (2018)
Zhang, W., Yang, D., Wang, H.: Data-driven methods for predictive maintenance of industrial equipment: a survey. IEEE Syst. J. 13(3), 2213–2227 (2019). https://doi.org/10.1109/JSYST.2019.2905565
CrossRef
Google Scholar
Zhong, S., Fang, Z., Zhu, M., Huang, Q.: A geo-ontology-based approach to decision-making in emergency management of meteorological disasters. Nat. Hazards 89(2), 531–554 (2017). https://doi.org/10.1007/s11069-017-2979-z
CrossRef
Google Scholar
Zhou, K., Zhao, W.X., Bian, S., Zhou, Y., Wen, J.R., Yu, J.: Improving conversational recommender systems via knowledge graph based semantic fusion. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1006–1014 (2020)
Google Scholar
Zhu Sun, J.Y., Zhang, J., Bozzon, A., Huang, L.K., Xu, C.: Recurrent knowledge graph embedding for effective recommendation (2018)
Google Scholar
Zonta, T., da Costa, C.A., da Rosa Righi, R., de Lima, M.J., da Trindade, E.S., Li, G.P.: Predictive maintenance in the industry 4.0: a systematic literature review. Comput. Ind. Eng. 106889 (2020)
Google Scholar