Skip to main content

Optimization of Mitigation Strategies During Epidemics Using Offline Reinforcement Learning

  • Conference paper
  • First Online:
Social, Cultural, and Behavioral Modeling (SBP-BRiMS 2021)

Abstract

Emerging infectious diseases affect a large number of people throughout the world. Preventing the spread of viruses and mitigating their adverse societal and economic effects are major challenges facing all institutions in society. When reacting to events occurring in real-time, approaches based on human decision-making systems usually encounter difficulties in sorting out the most efficient mitigation strategies. In this paper, we present the framework for a real-time data-driven decision support tool for policymakers. Our framework is based on a reinforcement learning algorithm meant to optimize governmental responses to the state of the epidemic at each time-step. This framework adapts to changes in epidemic-spread given the advances in disease treatment methods and public health interventions. The mitigation strategy is adjusted based on the government’s priorities in a specific region. Our model is validated based on the COVID-19 data collected from New York state, USA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.who.int/emergencies/diseases/en/.

  2. 2.

    https://www.cdc.gov/flu/pandemic-resources/.

  3. 3.

    https://covid19tracker.health.ny.gov/.

  4. 4.

    https://www.census.gov/quickfacts/NY.

References

  1. World Health Organization, et al.: Pandemic influenza preparedness and response: a WHO guidance document. World Health Organization (2009)

    Google Scholar 

  2. Li, Q., et al.: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. New Engl. J. Med. 38(13), 1199–1207 (2020)

    Article  Google Scholar 

  3. Cooper, I., Mondal, A., Antonopoulos, C.G.: A SIR model assumption for the spread of Covid-19 in different communities. Chaos Solitons Fractals 139, 110057 (2020)

    Article  MathSciNet  Google Scholar 

  4. Ahmad, R., Xu, K.S.: Continuous-time simulation of epidemic processes on dynamic interaction networks. In: Thomson, R., Bisgin, H., Dancy, C., Hyder, A. (eds.) SBP-BRiMS 2019. LNCS, vol. 11549, pp. 143–152. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21741-9_15

    Chapter  Google Scholar 

  5. Acemoglu, D., Chernozhukov, V., Werning, I., Whinston, M.D.: Optimal targeted lockdowns in a multi-group SIR model, vol. 27102, National Bureau of Economic Research (2020)

    Google Scholar 

  6. Bjørnstad, O.N., Finkenstädt, B.F., Grenfell, B.T.: Dynamics of measles epidemics: estimating scaling of transmission rates using a time series sir model. Ecol. Monogr. 72(2), 169–184 (2002)

    Article  Google Scholar 

  7. Smith, M.C., Broniatowski, D.A.: Modeling influenza by modulating flu awareness. In: Xu, K.S., Reitter, D., Lee, D., Osgood, N. (eds.) SBP-BRiMS 2016. LNCS, vol. 9708, pp. 262–271. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39931-7_25

    Chapter  Google Scholar 

  8. Obadimu, A., Mead, E., Maleki, M., Agarwal, N.: Developing an epidemiological model to study spread of toxicity on YouTube. In: Thomson, R., Bisgin, H., Dancy, C., Hyder, A., Hussain, M. (eds.) SBP-BRiMS 2020. LNCS, vol. 12268, pp. 266–276. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61255-9_26

    Chapter  Google Scholar 

  9. Khadilkar, H., Ganu, T., Seetharam, D.P.: Optimising lockdown policies for epidemic control using reinforcement learning. Trans. Ind. Nat. Acad. Eng. 5(2), 129–132 (2020)

    Article  Google Scholar 

  10. Kahn, G., Abbeel, P., Levine, S.L.: Learning to navigate from disengagements. IEEE Rob. Autom. Lett

    Google Scholar 

  11. Schrittwieser, J., et al.: Mastering atari, go, chess and shogi by planning with a learned model. Nature 588(7839), 604–609 (2020)

    Article  Google Scholar 

  12. Vereshchaka, A., Dong, W.: Dynamic resource allocation during natural disasters using multi-agent environment. In: Thomson, R., Bisgin, H., Dancy, C., Hyder, A. (eds.) SBP-BRiMS 2019. LNCS, vol. 11549, pp. 123–132. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21741-9_13

    Chapter  Google Scholar 

  13. Keeling, M., Danon, L.: Mathematical modelling of infectious diseases. Br. Med. Bull. 92(1), 33–42 (2009)

    Article  Google Scholar 

  14. Wan, R., Zhang, X., Song, R.: Multi-objective reinforcement learning for infectious disease control with application to Covid-19 spread. arXiv preprint arXiv:2009.04607 (2020)

  15. Dan, J.M., et al.: Immunological memory to SARS-Cov-2 assessed for up to 8 months after infection. Science 371, eabf4063 (2021)

    Article  Google Scholar 

  16. Peng, X.B., Kumar, A., Zhang, G., Levine, S.: Advantage-weighted regression: simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177 (2019)

  17. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  18. van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, pp. 2094–2100 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Vereshchaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vereshchaka, A., Kulkarni, N. (2021). Optimization of Mitigation Strategies During Epidemics Using Offline Reinforcement Learning. In: Thomson, R., Hussain, M.N., Dancy, C., Pyke, A. (eds) Social, Cultural, and Behavioral Modeling. SBP-BRiMS 2021. Lecture Notes in Computer Science(), vol 12720. Springer, Cham. https://doi.org/10.1007/978-3-030-80387-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80387-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80386-5

  • Online ISBN: 978-3-030-80387-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics