Skip to main content

Potential Applications of Nanomaterials in Agronomy: An African Insight

  • Chapter
  • First Online:
Emerging Nanomaterials for Advanced Technologies

Abstract

Agriculture is critical for attaining one of the sustainable development goals i.e. zero hunger, thus the current drive towards sustainable agricultural intensification. The aim of sustainable intensification is to increase agricultural productivity through employment of the latest technologies in reducing waste and negative environmental impacts of green revolution agriculture. Nanotechnology is developing to be a revolutionary and emerging technology which allows for the manipulation of matter at the nanoscale. Though much research still needs to be done from an agronomic perspective, nanotechnology promises the smart delivery of nanopesticides, nano-fertilizers, and nano-sensors, which have potential to compliment current technologies for sustainable intensification. This chapter presents the prospects of this emerging technology in African agronomic research and the potential economic impacts of this technology on agriculture. The chapter also highlights areas where research will be critical to complement current trends in agronomic research and smallholder farming in Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aziz HMM, Hasaneen MNA, Omer AM (2016) Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span J Agric Res 14(1):e0902. https://doi.org/10.5424/sjar/2016141-8205

    Article  Google Scholar 

  • Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: A novel tool for a green biotechnology? In: Fungal Nanobionics: Principles and Applications (eds. Prasad R, Kumar V, Kumar M and Wang S), Springer Singapore Pte Ltd. 61–87

    Google Scholar 

  • Adeeyo AO, Odiyo JO (2018) Biogenic synthesis of silver nanoparticle from mushroom exopolysaccharides and its potentials in water purification. Open Chem J 5(1):64–75. https://doi.org/10.2174/1874842201805010064

    Article  Google Scholar 

  • Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS (2015) Characterization of zinc oxide nano particles and their effect on growth of maize (Zea mays L.) plant. J Plant Nutr 38:1505–1515

    Article  Google Scholar 

  • Aminiyan MM, Sinegani AAS, Sheklabadi M (2015) Assessment of changes in different fractions of the organic carbon in a soil amended by nanozeolite and some plant residues: incubation study. Int J Recycl Org Waste Agricult 4:239–247

    Google Scholar 

  • Aygün A, Özdemir S, Gülcan M, Cellat K, Şena F (2020) Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. J Pharm Biomed Anal 178. https://doi.org/10.1016/j.jpba.2019.112970

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

  • Balakumaran MD, Ramachandran R, Balashanmugam P, Mukeshkumar DJ, Puthupalayam K (2016) Mycosynthesis of silver and gold nanoparticles: optimization, characterization and antimicrobial activity against human pathogens. Microbiol Res 182:8–20. https://doi.org/10.1016/j.micres.2015.09.009

    Article  CAS  PubMed  Google Scholar 

  • Barrett CB, Bevis LE (2015) The self-reinforcing feedback between low soil fertility and chronic poverty. Nat Geosci 8:907

    Google Scholar 

  • Baudoin, M.A., Vogel C., Nortjea, K., & Naika, M. (2017). Living with drought in South Africa:

    Google Scholar 

  • Bayat H, Kolahchi Z, Valaey S, Rastgou M, Mahdavi S (2018) Novel impacts of nanoparticles on soil properties: tensile strength of aggregates and compression characteristics of soil. Arch Agron Soil Sci 64:6, 776–789. https://doi.org/10.1080/03650340.2017.1393527

    Article  CAS  Google Scholar 

  • Bekunda M, Sanginga N, Woomer PL (2010) Restoring soil fertility in sub-Sahara Africa. In: Advances in agronomy, vol 108. Academic Press, pp 183–236

    Google Scholar 

  • Bhanja SK, Samanta SK, Mondal B, Jana S, Ray J, Pandey A, Tripathy T (2020) Green synthesis of Ag@Au bimetallic composite nanoparticles using a polysaccharide extracted from Ramaria botrytis mushroom and performance in catalytic reduction of 4-nitrophenol and antioxidant, antibacterial activity. Environ Nanotechnol Monitor Manag 14. https://doi.org/10.1016/j.enmm.2020.100341

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: Emerging trend in insect pest control. In: Advances and Applications through Fungal Nanobiotechnology (ed. Prasad R), Springer International Publishing Switzerland 307–319

    Google Scholar 

  • Canton J. undated. The Emerging NanoEconomy: Key Drivers, Challenges and Opportunities. In Nanotechnology: Societal Implications—Individual Perspectives (Ed: Roco M.C.) National Science Foundation. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.5080&rep=rep1&type=pdf

  • Chiduza C, Dube E (2013) Maize production challenges in high biomass input smallholder farmer conservation agriculture systems: a practical research experience from South Africa. In: African crop science conference proceedings 11:23–27

    Google Scholar 

  • Chiduza C, Dube E (2017) Maize production challenges in high biomass input smallholder farmer conservation agriculture systems: a practical research experience from South Africa. African Crop Science Conference Proceedings, 11:23–27

    Google Scholar 

  • Cui HX, Sun CJ, Liu Q, Jiang J, Gu W (2010) Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies. In: International conference on Nanoagri, Sao Pedro, Brazil, 20–25 June 2010, pp 28–33

    Google Scholar 

  • Dasgupta N, Ranjan S, Deepa M, Chidambaram R, Ashutosh K, Rishi S (2014) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400

    Article  Google Scholar 

  • Debnath G, Das P, Saha AK (2020) Green synthesis of silver nanoparticles using mushroom extract of Pleurotus giganteus: characterization, antimicrobial, and α-amylase inhibitory activity. Bionanoscience 9:611–619. https://doi.org/10.1007/s12668-019-00650-y

    Article  Google Scholar 

  • Dheya MA, Owaid MN, Rabeea MA, Aziz AA, Jameel MS (2020) Mycosynthesis of gold nanoparticles by the Portabello mushroom extract, Agaricaceae, and their efficacy for decolorization of Azo dye. Environ Nanotechnol Monitor Manag 14. https://doi.org/10.1016/j.enmm.2020.100312

  • Dube E, Chiduza C, Muchaonyerwa P (2012) Conservation agriculture effects on soil organic matter on a Haplic Cambisol after four years of maize–oat and maize–grazing vetch rotations in South Africa. Soil Tillage Res 123:21–28

    Article  Google Scholar 

  • El-Ramady H, El-Ghamry A, Mosa A, Alshaal T (2018) Nanofertilizers vs. biofertilizers: new insights. Environ Biodivers Soil Secur 2:40–50

    Article  Google Scholar 

  • Fanadzo M (2007) Weed management by small-scale irrigation farmers – the story of Zanyokwe. SA Irrig 29(6):20–24

    Google Scholar 

  • Fanadzo M (2010) Improving productivity of maize-based smallholder irrigated cropping systems: a case study of Zanyokwe Irrigation Scheme, Eastern Cape, South Africa. PhD Thesis, University of Fort Hare, South Africa

    Google Scholar 

  • Fanadzo M, Chiduza C, Mnkeni PNS, Van der Stoep L, Steven J (2010) Crop production management practices as a cause for low water productivity at Zanyokwe Irrigation Scheme. Water SA 36(1):27–36

    Google Scholar 

  • Fanadzo M, Dalicuba M, Dube E (2018) Application of conservation agriculture principles for the management of field crops pests. In: Sustainable Agriculture Reviews, vol 28. Springer, Cham, pp 125–152

    Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20. https://doi.org/10.3389/fenvs.2016.00020

  • Ghasemmezhad A, Ghorbanpour M, Sohrabi O, Ashnavar M (2019) A general overview on application of nanoparticles to agriculture and plant science, Comprehens. Anal Chem 87:85–110

    Google Scholar 

  • Giller KE, Witter E, Corbeels M, Tittonell P (2009) Conservation agriculture and smallholder farming in Africa: the heretics’ view. Field Crop Res 114(1):23–34

    Article  Google Scholar 

  • Hayles J, Johnson L, Worthley C, Losic D (2017) Nanopesticides: a review of current research and perspectives, Editor(s): Alexandru Mihai Grumezescu, New Pesticides and Soil Sensors, Academic Press 193–225. https://doi.org/10.1016/B978-0-12-804299-1.00006-0

  • Hussein HS, Shaarawy HH, Hussien NH, Hawash SI (2019) Preparation of nano-fertilizer blend from banana peels. Bullet Nat Res Centre 43(1):26

    Article  Google Scholar 

  • Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13:677–684

    Article  CAS  Google Scholar 

  • Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43:1823–1867

    Article  CAS  Google Scholar 

  • Kamalebo HM, Wa Malale HMS, Ndabaga CM, Degreef J, De Kesel A (2018) Uses and importance of wild fungi: traditional knowledge from the Tshopo province in the Democratic Republic of the Congo. J Ethnobiol Ethnomed 1214(1):13. https://doi.org/10.1186/s13002-017-0203-6. PMID: 29433575; PMCID: PMC5809825.

  • Kanjana D (2019) Foliar study on effect of iron oxide nanoparticles as an alternate source of iron fertilizer to cotton. Int J Chem Stud 7:4374–4379

    CAS  Google Scholar 

  • Khanna P, Kaur A, Goyal D. (2019) Algae-based metallic nanoparticles: Synthesis, characterization and applications. J Microbiol Methods. 163:105656. https://doi.org/10.1016/j.mimet.2019.105656. Epub. PMID: 31220512

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot 35:64–70

    Google Scholar 

  • Mafongoya PL, Bationo A, Kihara J, Waswa BS (2006) Appropriate technologies to replenish soil fertility in southern Africa. Nutr Cycl Agroecosyst 76(2-3):137–151

    Article  Google Scholar 

  • Mahanta N, Dambale A, Rajkhowa M (2019) Nutrient use efficiency through nano fertilizers. Int J Chem Stud 7(3):2839–2842

    CAS  Google Scholar 

  • Manimaran K, Murugesan S, Ragavendran C, Balasubramani G, Natarajan D, Ganesan A, Seedevi P (2020) Biosynthesis of TiO2 nanoparticles using edible mushroom (Pleurotus djamor) extract: mosquito Larvicidal, histopathological, antibacterial and anticancer effect. J Clust Sci. https://doi-org.ezproxy.unam.edu.na/10.1007/s10876-020-01888-3

  • Marzouk NM, Abd-Alrahman HA, EL-Tanahy AMM, Mhmoud SH (2019) Impact of foliar spraying of nano micronutrient fertilizers on the growth, yield, physical quality, and nutritional value of two snap bean cultivars in sandy soils. Bull Natl Res Cent 43:84. https://doi.org/10.1186/s42269-019-0127-5

  • Mikkelsen R (2018) Nanofertilizer and nanotechnology: a quick look. Better Crops 102. https://doi.org/10.24047/BC102318

  • Miranda-Villagómez E, Trejo-Téllez LI, Gómez-Merino FC, Sandoval-Villa M, Sánchez-García P, Aguilar-Méndez MÁ (2019) Nanophosphorus fertilizer stimulates growth and photosynthetic activity and improves P status in Rice. J Nanomater 2019:5368027

    Article  Google Scholar 

  • Iqbal MA (2019) Nano-fertilizers for sustainable crop production under changing climate: a global perspective, Sustainable Crop Production, Mirza Hasanuzzaman, Marcelo Carvalho Minhoto Teixeira Filho, Masayuki Fujita and Thiago Assis Rodrigues Nogueira, IntechOpen, https://doi.org/10.5772/intechopen.89089. Available from: https://www.intechopen.com/books/sustainable-crop-production/nano-fertilizers-for-sustainable-crop-production-under-changing-climate-a-global-perspective

  • Musee N, Foladori G, Azoulay D (2012) Social and environmental implications of nanotechnology development in Africa. CSIR (Nanotechnology Environmental Impacts Research Group, South Africa) / ReLANS (Latin American Nanotechnology and Society Network) / IPEN (International POPs Elimination Network)

    Google Scholar 

  • Musee N, Obersholster PJ, Sikhwivhilu L, Botha A-M (2010) The effects of engineered nanoparticles on survival, reproduction, and behaviour of freshwater snail, Physa acuta (Draparnaud, 1805). Chemosphere 81:1196–1203

    Article  CAS  Google Scholar 

  • Nyambo P, Taeni T, Chiduza C, Araya T (2018) Effects of maize residue biochar amendments on soil properties and soil loss on acidic Hutton soil. Agronomy 8(11):256

    Article  Google Scholar 

  • Ozin GA, Arsenault AC, Cademartiri L (2009) Nanochemistry: a chemical approach to nanomaterials. Royal Society of Chemistry, London

    Google Scholar 

  • Padidar M, Jalalian A, Abdouss M, Najafi P, Honarjoo N, Fallahzade J (2015) Effects of Nanoclay on Some Physical Properties of Sandy Soil and Wind Erosion. Int J Soil Sci 11(1):9–13

    Google Scholar 

  • Patil HBV, Nithin KS, Sachhidananda S, Hatna S, Siddaramaiah H, Chandrashekarad KT, Kumara BYS (2019) Mycofabrication of bioactive silver nanoparticle: photo catalysed synthesis and characterization to attest its augmented bio-efficacy. Arab J Chem 12(8):4596–4611

    Article  Google Scholar 

  • Pramanik P, Krishnan P, Maity A, Mridha N, Mukherjee A, Rai V (2020) In: Dasgupta et al (eds) Environmental nanotechnology Volume 4, Environmental chemistry for a sustainable world 32. https://doi.org/10.1007/978-3-030-26668-4_9

    Google Scholar 

  • Prasad R (2016) Advances and Applications through Fungal Nanobiotechnology. Springer, International Publishing Switzerland (ISBN: 978-3-319-42989-2)

    Google Scholar 

  • Prasad R (2017) Fungal Nanotechnology: Applications in Agriculture, Industry, and Medicine. Springer Nature Singapore Pte Ltd. (ISBN 978-3-319-68423-9)

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Google Scholar 

  • Prasad R, Kumar V, Kumar M, Wang S (2018) Fungal Nanobionics: Principles and Applications. Springer Nature Singapore Pte Ltd. (ISBN 978-981-10-8666-3). https://www.springer.com/gb/book/9789811086656

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi: 10.3389/fmicb.2017.01014

    Google Scholar 

  • Prasad R, Kumar M, Kumar V (2017b) Nanotechnology: An Agriculture paradigm. Springer Nature Singapore Pte Ltd. (ISBN: 978-981-10-4573-8)

    Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

  • Prasad R, Jha A, Prasad K (2018) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0) https://www.springer.com/978-3-319-99570-0

  • Rabeea MA, Owaid MN, Aziz AA, Jameel MS, Dheya MA (2020) Mycosynthesis of gold nanoparticles using the extract of Flammulina velutipes, Physalacriaceae, and their efficacy for decolonization of methylene blue. J Environ Chem Eng 8. https://doi.org/10.1016/j.jece.2020.103841

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomat Nanobiotechnol 3:315–324

    Article  CAS  Google Scholar 

  • Ramanan V, Shah S, Prasad R (2020) Global Climate Change and Environmental Policy: Agriculture Perspectives. Springer Singapore (ISBN: 978-981-13-9570-3) https://www.springer.com/gp/book/9789811395697

  • Rehman S, Jermy R, Asiri SM, Shah MA, Farooq R, Ravinayagam V, Ansaria MA, Alsalem Z, Jindan RA, Reshi Z, Khan FA (2020) Using Fomitopsis pinicola for bioinspired synthesis of titanium dioxide and silver nanoparticles, targeting biomedical applications. Royal Soc Chem Adv 10:32137–32147. https://doi.org/10.1039/D0RA02637A

    Article  CAS  Google Scholar 

  • Rockstrom J (2000) Water resources management in smallholder farms in Eastern and Southern Africa: an overview. Phys Chem Earth 25:275–283

    Article  Google Scholar 

  • Royal Society and the Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. Royal Society, United Kingdom

    Google Scholar 

  • Sahu G (2020) Role and prospects of nanotechnology in agriculture. Agric Food E-Newslett 2(8):377–379, Article ID: 31139. Available at www.agrifoodmagazine.co.in. Accessed on 28/09/20

    Google Scholar 

  • Sarma H, Joshi S, Prasad R, Jampilek J (2021) Biobased Nanotechnology for Green Applications. Springer International Publishing (ISBN 978-3-030-61985-5) https://www.springer.com/gp/book/9783030619848

    Google Scholar 

  • Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J (2019) Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24:2558

    Article  CAS  Google Scholar 

  • Sheykhbaglou R, Sedghi M, Fathi-Achachlouie B (2018) The effect of ferrous nano-oxide particles on physiological traits and nutritional compounds of soybean (Glycine max L.) seed. An Acad Bras Cienc 90(1):485–494

    Article  CAS  Google Scholar 

  • Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern G (2015) Green synthesis of metallic nanoparticles via biological entities. Materials (Basel, Switzerland), 8(11):7278–7308. https://doi.org/10.3390/ma8115377

  • Srivastava S, Usmani Z, Atanasov AG, Singh VK, Singh NP, Abdel-Azeem AM, Prasad R, Gupta G, Sharma M, Bhargava A (2021) Biological nanofactories: Using living forms for metal nanoparticle synthesis. Mini-Reviews in Medicinal Chemistry 21(2):245–265

    Google Scholar 

  • Van Averbeke W, M’marete CK, Igodan CO, Belete A (1998) An investigation into food plot production at irrigation schemes in central Eastern Cape. WRC Report 719/1/98. Water Research Commission, Pretoria

    Google Scholar 

  • Vanlauwe B, Giller KE (2006) Popular myths around soil fertility management in sub-Saharan Africa. Agric Ecosyst Environ 116(1-2):34–46

    Article  Google Scholar 

  • Vanlauwe B, Bationo A, Chianu J, Giller KE, Merckx R, Mokwunye U et al (2010) Integrated soil fertility management: operational definition and consequences for implementation and dissemination. Outlook Agric 39(1):17–24

    Article  Google Scholar 

  • Vanlauwe B, Descheemaeker K, Giller KE, Huising J, Merckx R, Nziguheba G et al (2015) Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation. Soil 1(1):491–508

    Article  Google Scholar 

  • Venkatramanan V, Shah S, Prasad R (2020) Global Climate Change and Environmental Policy: Resilient and Smart Agriculture. Springer Singapore (ISBN: 978-981-329-855-2) https://www.springer.com/gp/book/9789813298552

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO 2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mupambwa, H.A. et al. (2022). Potential Applications of Nanomaterials in Agronomy: An African Insight. In: Krishnan, A., Ravindran, B., Balasubramanian, B., Swart, H.C., Panchu, S.J., Prasad, R. (eds) Emerging Nanomaterials for Advanced Technologies. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-80371-1_20

Download citation

Publish with us

Policies and ethics