Skip to main content

Nanoscale Smart Drug Delivery Systems and Techniques of Drug Loading to Nanoarchitectures

  • Chapter
  • First Online:
Emerging Nanomaterials for Advanced Technologies

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Conventional drug delivery systems suffer from less therapeutic efficiency with adverse side effects and poor specificity in action. The progression of nanoscale drug delivery systems leads to better transport, controlled delivery, and site-specific action of drugs than conventional drug delivery systems, so nano-based drug delivery systems are better option for the diagnosis and therapy of many diseases. These nanosize drug delivery systems may be organic, inorganic, or hybrid in nature. The organic nanocarriers are polymeric micelles, vesicles, nanoliposomes, dendrimer, solid lipid nanoparticles (SLNs), nanogels, carbon nanotubes, fullerenes, graphene, etc. The inorganic nanocarriers are quantum dots, gold and mesoporous silica nanoparticles (MSNs), etc. Many advanced strategies for controlled drug release and drug loading to nanocarriers have been developed. Controlled drug release at target site can be attained either by spontaneous diffusion or by applying proper stimulus. For stimulus-responsive drug release, the stimulus may be internal or external. Physical (temperature, light, ultrasonic vibrations, magnetic field, ionic strength), chemical (redox, pH), and biological stimulus (enzymes) are generally used for controlled drug release at target site. Based on the nature of nanocarriers, there is a wide choice of principles and procedures followed to load drugs to these nanostructures. Basically, drug molecules are loaded to nanocarriers by encapsulation or entrapment techniques via covalent or non-covalent bonds. Thus, improved site-specific action and optimum rate of drug release from nano drug carriers have made numerous applications almost in every division of medicine especially oncology, immunology, pulmonary medicine, orthopedics, neurology, dentistry, ophthalmology, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdifetah O, Na-Bangchang K (2019) Pharmacokinetic studies of nanoparticles as a delivery system for conventional drugs and herb-derived compounds for cancer therapy: a systematic review. Int J Nanomedicine 14:5659–5677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ajayan PM, Ebbesen TW, Ichihashi T, Iijima S, Tanigaki K, Hiura H (1993) Opening carbon nanotubes with oxygen and implications for filling. Nature 362(6420):522–525

    Article  CAS  Google Scholar 

  • Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystaltargeting in vivo. Proc Natl Acad Sci 99:12617–12621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Jamal KT, Gherardini L, Bardi G, Nunes A, Guo C, Bussy C et al (2011) Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proc Natl Acad Sci USA 108:10952–10957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso J, Khurshid H, Devkota J, Nemati Z, Khadka NK, Srikanth H, Pan JJ, Phan MH (2016) Superparamagnetic nanoparticles encapsulated in lipid vesicles for advanced magnetic hyperthermia and biodetection. J Appl Phys 119:083904

    Article  Google Scholar 

  • Ammoury N, Fessi H, Devissaguet JP, Dubrasquet M, Benita S (1991) Jejunal absorption, pharmacological activity and pharmacokinetic evaluation of indomethacin-loaded poly(d,l- lactide) and poly(isobutylcyanoacrylate) nanocapsules in rats. Pharm Res 8:101–105

    Article  CAS  PubMed  Google Scholar 

  • Angelova A, Angelov B, Mutafchieva R, Lesieur S (2015) Biocompatible mesoporous and soft nanoarchitectures. J Inorganic Organometal Polym Mater 25(2):214–232

    Article  Google Scholar 

  • Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R et al (2007) Quantum DotâAptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer. Nano Lett 7:3065–3070

    Article  CAS  PubMed  Google Scholar 

  • Ballauff M, Likos CN (2004) Dendrimers in solution: insight from theory and simulation. Angewandte Chemie 43(23):2998–3020

    Article  CAS  PubMed  Google Scholar 

  • Barichello JM, Morishita M, Takayama K, Nagai T (1999) Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 25:471–476

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya K, Andón FT, El-Sayed R, Fadeel B (2013) Mechanisms of carbon nanotube-induced toxicity: focus on pulmonary inflammation. Adv Drug Deliv Rev 65:2087–2097

    Article  CAS  PubMed  Google Scholar 

  • Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A et al (2009) Targeted killing of cancer cells in vivo and in vitro with EGF directed carbon nanotube-based drug delivery. ACS Nano 3:307–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchemal K, Briancon S, Perrier E, Fessi H, Bonnet I, Zydowicz N (2004) Synthesis and characterization of polyurethane and poly(ether urethane) nanocapsules using a new technique of interfacial polycondensation combined to spontaneous emulsification. Int J Pharm 269:89–100

    Article  CAS  PubMed  Google Scholar 

  • Cavalli R, Caputo O, Gasco MR (1993) Solid lipospheres of doxorubicin and idarubicin. Int J Pharm 89:R9–R12

    Article  CAS  Google Scholar 

  • Chacko RT, Ventura J, Zhuang J, Thayumanavan S (2012) Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev 64:836–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan WCW (2007) Bio-applications of nanoparticles. Landes Bioscience, Austin, TX

    Book  Google Scholar 

  • Chauhan AS (2018) Dendrimers for Drug Delivery. Molecules 23:938, 9 pages

    Article  PubMed Central  Google Scholar 

  • Chauhan AS, Jain NK, Diwan PV, Khopade AJ (2004) Solubility enhancement of indomethacin with poly(amidoamine) dendrimers and targeting to inflammatory regions of arthritic rats. J Drug Target 12:575–583

    Article  CAS  PubMed  Google Scholar 

  • Chauhan A, Newenhouse E, Gerhardt A (2018) Compositions comprising a Dendrimer-resveratrol complex and methods for making and using the same. U.S. Patent 9,855,223 B2, 2 January

    Google Scholar 

  • Chen Y, Cai RF, Chen S et al (2001) Synthesis and characterization of fullerol derived from C60n- precursors. J Phys Chem Solids 62:999–1001

    Article  Google Scholar 

  • Chen H, Zhang X, Dai S (2013) Multifunctional gold nano star conjugates for tumor imaging and combined photothermal and chemo-therapy. Theranostics 3(9):633–649

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen HH, Huang WC, Chiang WH, Liu TI, Shen MY, Hsu YH, Lin SC, Chiu HC (2015) pH-responsive therapeutic solid lipid nanoparticles for reducing P-glycoprotein-mediated drug efflux of multidrug resistant cancer cells. Int J Nanomedicine 10:5035–5048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Tezcan O, Li D, Beztsinna N, Lou B, Etrych T, Ulbrich K, Metselaar JM, Lammers T, Hennink WE (2017) Overcoming multidrug resistance using folate receptor-targeted and pH-responsive polymeric nanogels containing covalently entrapped doxorubicin. Nanoscale 9:10404–10419

    Article  CAS  PubMed  Google Scholar 

  • Cho H, Gao J, Kwon GS (2016) PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol–gels for drug delivery. J Control Release 240(28):191–201

    Article  CAS  PubMed  Google Scholar 

  • Couvreur P (2013) Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev 65(1):21–23

    Article  CAS  PubMed  Google Scholar 

  • Couvreur P, Dubernet C, Puisieux F (1995) Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur J Pharm Biopharm 41:2–13

    CAS  Google Scholar 

  • Couvreur P, Barrat G, Fattal E, Legrand P, Vauthier C (2002) Nanocapsule technology. Crit Rev Ther Drug Carrier Syst 19:99–134

    Article  CAS  PubMed  Google Scholar 

  • Croissant JG, Fatieiev Y, Khashab NM (2017) Degradability and clearance of silicon, Organosilica, Silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv Mater 29(9):51

    Google Scholar 

  • Dadashzadeh S, Vali AM, Rezaie M (2008) The effect of PEG coating on in vitro cytotoxicity and in vivo disposition of topotecan loaded liposomes in rats. Pharm Nanotechnol 353:251–259

    CAS  Google Scholar 

  • DarshanaNagda KS, Rathore M, Bharkatiya S, Sisodia S, Nema RK (2010) Bucky balls: a novel drug delivery system. J Chem Pharm 2(2):240–248

    Google Scholar 

  • De Villiers MM, Lvov YM (2007) Nanoshells for drug delivery (Chapter 12). In: Kumar CSSR (ed) Nanotechnologies for the life sciences Vol. 10 Nanomaterials for medical diagnosis and therapy. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. ISBN: 978-3-527-31390-7

    Google Scholar 

  • Degiorgio V, Corti M (eds) (1985) Physics of Amphiphiles: micelles, vesicles and microemulsions. North-Holland, Amsterdam

    Google Scholar 

  • Ding CZ, Li ZB (2017) A review of drug release mechanisms from nanocarrier systems. Mater Sci Eng 76:1440–1453

    Article  CAS  Google Scholar 

  • Domenico Lombardo, Kiselev MA, Caccamo MT (2019) Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. Hindawi J Nanomater Article ID 3702518:26 pages

    Google Scholar 

  • Dreaden EC, Austin LA, Mackey MA, El-Sayed MA (2012) Size matters: gold nanoparticles in targeted cancer drug delivery. Ther Deliv 3(4):457–478

    Article  CAS  PubMed  Google Scholar 

  • Duclairoir C, Orecchioni AM, Depraetere P, Nakache E (2002) α-Tocopherol encapsulation and in vitro release from wheat gliadin nanoparticles. J Microencapsul 19:53–60

    Article  CAS  PubMed  Google Scholar 

  • Duncan R, Izzo L (2005) Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 57(15):2215–2237

    Article  CAS  PubMed  Google Scholar 

  • Ebbesen TW (1996) Wetting, filling and decorating carbon nanotubes. J Phys Chem Solids 57(6-8):951–955

    Article  CAS  Google Scholar 

  • Esposito E, Pecorelli A, Sguizzato M, Drechsler M, Mariani P, Carducci F, Valacchi G (2018) Production and characterization of nanoparticle based hyaluronate gel containing retinylpalmitate for wound healing. Curr Drug Deliv 15(8):1172–1182

    Article  CAS  PubMed  Google Scholar 

  • Esquisabel A, Herna’ndez RM, Igartua M, Gasco’n AR, Calvo B, Pedraz JL (1997) Production of BCG alginate-PLL microcapsules by emulsification/internal gelation. J Microencapsul 14:627–638

    Article  CAS  PubMed  Google Scholar 

  • Fu Q, Weinberg G, Su DS (2008) Selective filling of carbon nanotubes with metals by selective washing. New Carbon Mater 23(1):17–20

    Article  CAS  Google Scholar 

  • Ganachaud F, Katz JL (2005) Nanoparticles and nanocapsules created using the ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high-shear devices. ChemPhysChem 6:209–216

    Article  CAS  PubMed  Google Scholar 

  • Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J (2013) Gene therapy clinical trials worldwide to 2012–an update. J Gene Med 15:65–77

    Article  CAS  PubMed  Google Scholar 

  • Gou XC, Liu J, Zhang HL (2010) Monitoring human telomere DNA hybridization and G-quadruplex formation using gold nanorods. Anal Chimacta 668:208–214

    Article  CAS  Google Scholar 

  • Grangier JL, Puygrenier M, Gauthier JC, Couvreur P (1991) Nanoparticles as carriers for growth hormone releasing factors (GRF). J Control Release 15:3–13

    Article  CAS  Google Scholar 

  • Harmia-Pulkkinen T, Tuomi A, Kristoffersson E (1989) Manufacture of polyalkylcyanoacrylate nanoparticles with pilocarpine and timolol by micelle polymerization: factors influencing particle formation. J Microencapsul 6:87–93

    Article  CAS  PubMed  Google Scholar 

  • Heister E, Neves V, Lamprecht C, Ravi S, Silva P, Helen M, Coley A, McFadden J (2012) Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes. Carbon 50:622–632

    Article  CAS  Google Scholar 

  • Hennink WE, van Nostrum VF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54(1):13–36

    Article  CAS  PubMed  Google Scholar 

  • Hirsch LR, Jackson A, Lee A, Halas NJ, West JL (2003a) A whole blood immunoassay usinggold nanoshells. Anal Chem 75:2377–2381

    Article  CAS  PubMed  Google Scholar 

  • Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003b) Nanoshell-mediated nearinfrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100:13549–13554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ, West JL (2006) Metal Nanoshells. Ann Biomed Eng 34(1):15–22

    Article  PubMed  Google Scholar 

  • Hu JJ, Liu LH, Li ZY, Zhuo RX, Zhang XZ (2016) MMP-responsive theranosticnanoplatform based on mesoporous silica nanoparticles for tumor imaging and targeted drug delivery. J Mater Chem B 4(11):1932–1940

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Zhang Y, Xie Z, Jing X, Bellotti A, Gu Z (2017) Stimuli-responsive polymersomes for biomedical applications. Biomacromolecules 18(3):649–673

    Google Scholar 

  • Husain Q (2017) Nanosupport bound lipases their stability and applications. Biointerface Res Appl Chem 7:2194–2216

    CAS  Google Scholar 

  • Illum L, Farraj NF, Davis SS (1994) Chitosan as novel nasal delivery system for peptide drugs. Pharm Res 11:1186–1189

    Article  CAS  PubMed  Google Scholar 

  • Jahnke S (1998) The theory of high pressure homogenization. In: Muller RH, Benita S, Bohm B (eds) Emulsions and nanosuspensions for the formulation of poorly soluble drugs. Medpharm Scientific Publishers, Stuttgart, pp 177–200

    Google Scholar 

  • Jong WHD, Borm PJA (2008) Drug delivery and nanoparticle applications and hazards. Int J Nanomedicine 3(2):133–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang B, Mackey MA, El-Sayed MA (2010) Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 132(5):1517–1519

    Article  CAS  PubMed  Google Scholar 

  • Khmelnitsky YL, Neverova IN, Gedrovich AV, Polyakov VA, Levashov AV, Martinek K (1992) Catalysis by α-chymotrypsin entrapped into surface-modified polymeric nanogranules in organic solvent. Eur J Biochem 210:751–757

    Article  CAS  PubMed  Google Scholar 

  • Khosa A, Reddi S, Saha RN (2018) Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother 103:598–613

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Rutka JT, Chan W (2010) Nanomedicine. New Engl J Med 363:2434–2443

    Article  CAS  PubMed  Google Scholar 

  • Kiselev MA, Lombardo D (2017) Structural characterization in mixed lipid membrane systems by neutron and X-ray scattering. Biochimicaet Biophysica Acta (BBA) - General Subjects 1861(1):3700–3717

    Article  CAS  Google Scholar 

  • Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ, Wang W (2017) Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 22(9):article 1445

    Article  Google Scholar 

  • Kotelnikova RA, Bogdanov GN, Frog EC et al (2003) Nanobionics of pharmacologically active derivatives of fullerene C60. J Nanopart Res 5:561–566

    Article  CAS  Google Scholar 

  • Kousalová J, Etrych T (2018) Polymeric Nanogels as drug delivery systems. Physiol Res 67(Suppl. 2):S305–S317

    Article  PubMed  Google Scholar 

  • Kreuter J, Tauber U, Illi V (1979) Distribution and elimination of poly (methyl-2-14C-methacrylate) nanoparticle radioactivity after injection in rats and mice. J Pharm Sci 68:1443–1447

    Article  CAS  PubMed  Google Scholar 

  • Kubiak C, Manil L, Couvreur P (1988) Sorptive properties of antibodies onto cyanoacrylic nanoparticles. Int J Pharm 41(181-18):7

    Google Scholar 

  • Kulhari H, Pooja D, Singh MK, Chauhan AS (2015) Optimization of carboxylate-terminated poly(amidoamine) dendrimer-mediated cisplatin formulation. Drug Dev Ind Pharm 41:232–238

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Badde S, Kamble R, Pokharkar VB (2010) Development and characterization of liposomal drug delivery system for nimesulide. Int J Pharm Pharm Sci 2(4):87–89

    CAS  Google Scholar 

  • Kumar KPS, Bhowmik D, Deb L (2012) Recent trends in liposomes used as novel drug delivery system. J Pharm Innov 1(1):26–34

    Google Scholar 

  • Kushwaha SKS, Ghoshal S, Rai AK, Singh S (2013) Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review. Braz J Pharm Sci 49(4):629–643

    Article  CAS  Google Scholar 

  • Lander R, Manger W, Scouloudis M, Ku A, Davis C, Lee A (2000) Gaulin homogenization: a mechanistic study. Biotechnol Prog 16:80–85

    Article  CAS  PubMed  Google Scholar 

  • Li J, Gupta S, Li C (2013) Research perspectives: gold nanoparticles in cancer theranostics. Quant Imag Med Surg 3(6):284–291

    Google Scholar 

  • Liu X, Dai Q, Austin L et al (2008) A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J Am Chem Soc 130(9):2780–2782

    Article  CAS  PubMed  Google Scholar 

  • Lodha A, Lodha M, Patel A, Chaudhuri J, Dalal J, Edwards M, Douroumis D (2012) Synthesis of mesoporous silica nanoparticles and drug loading of poorly water soluble drug cyclosporin A. J Pharm Bioallied Sci 4(Suppl 1):S92–S94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardo D (2009) Liquid-like ordering of negatively charged poly (amidoamine) (PAMAM) dendrimers in solution. Langmuir 25(5):3271–3275

    Google Scholar 

  • Lombardo D, Kiselev MA, Magazù S, Calandra P (2015) Amphiphiles self-assembly: basic concepts and future perspectives of supramolecular approaches. Adv Condens Matter Phys:Article ID 151683, 22 pages

    Google Scholar 

  • Lowe PJ, Temple CS (1994) Calcitonin and insulin in isobutylcyanoacrylatenanocapsules: protection against proteases and effect on intestinal absorption in rats. J Pharm Pharmacol 46:547–552

    Article  CAS  PubMed  Google Scholar 

  • Ma GL, Lin WF, Yuan ZF, Wu J, Qian HF, Xua LB, Chen SF (2017) Development of ionic strength/pH/enzyme triple-responsive zwitterionic hydrogel of the mixed l-glutamic acid and l-lysine polypeptide for site-specific drug delivery. J Mater Chem B 5:935–943

    Article  CAS  PubMed  Google Scholar 

  • Maitra J, Shukla VK (2014) Cross-linking in hydrogels – a review. Am J Polym Sci 4(2):25–31

    Google Scholar 

  • Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Iancu C, Mocan L (2017) Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 12:5421–5431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattos BD, Tardy BL, Magalhaes WLE, Rojas OJ (2017) Controlled release for crop and wood protection: recent progress toward sustainable and safe nanostructured biocidal systems. J Control Release 262:139–150

    Article  CAS  PubMed  Google Scholar 

  • McIntosh CM, Esposito EA, Boal AK, Simard JM, Martin CT, Rotello VM (2001) Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J Am Chem Soc 123(31):7626–7629

    Article  CAS  PubMed  Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  CAS  PubMed  Google Scholar 

  • Memisoglu E, Bochot A, O¨ zalp M, Sen M, Ducheˆne D, Hincal A (2003) Direct formation of nanospheres from amphiphilic beta-cyclodextrin inclusion complexes. Pharm Res 20:117–125

    Article  CAS  PubMed  Google Scholar 

  • Michel C, Roques M, Couvreur P, Vranchx H, Baldschmidt P (1991) Isobutylcyanoacrylatenanoparticles as drug carrier for oral administration of insulin. Proc Int Symp Control Release Bioact Mater 18:97–98

    Google Scholar 

  • Mikhail AS, Allen C (2009) Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. J Control Release 138(3):214–223

    Article  CAS  PubMed  Google Scholar 

  • Monthioux M (2002) Filling single-wall carbon nanotubes. Carbon 40(10):1809–1823

    Article  CAS  Google Scholar 

  • Mourya V, Inamdar N, Nawale R, Kulthe S (2011) Polymeric micelles: general considerations and their applications. Ind J Pharm Educ Res 45:128–138

    Google Scholar 

  • Muller RH, Schwarz C, Mehenert W, Lucks JS (1993) Production of solid lipid nanoparticles for controlled drug delivery. Proc Int Symp Control Release Bioact Mater 20(1993):480–481

    Google Scholar 

  • Nalawade P, Mukherjee T, Kapoor S (2012) High-yield synthesis of multispiked gold nanoparticles: characterization and catalytic reactions. Colloid Surfac A: Physicochem Eng Asp 396:336–340

    Article  CAS  Google Scholar 

  • Neetu S, Amrita K, Luo G, Kevin L, Jordan SM, Christopher SC, Michael JS, Sangeeta NB (2011) BioresponsiveMesoporous silica nanoparticles for triggered drug release. J Am Chem Soc 133:19582–19585

    Article  Google Scholar 

  • Novoselov KS, Fal'ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    Article  CAS  PubMed  Google Scholar 

  • Palmerston Mendes L, Pan J, Torchilin V (2017) Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22(9):article 1401

    Article  Google Scholar 

  • Pardeike J, Hommoss A, Müller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366(1-2):170–184

    Article  CAS  PubMed  Google Scholar 

  • Pardeshi C, Rajput P, Belgamwar V, Tekade A, Patil G, Chaudhary K, Sonje A (2012) Solid lipid based nanocarriers: an overview. Acta Pharma 62:433–472

    Article  CAS  Google Scholar 

  • Patil GV (2003) Biopolymer albumin for diagnosis and in drug delivery. Drug Dev Res 58:219–247

    Article  CAS  Google Scholar 

  • Patnaik S, Sharma AK, Garg BS, Gandhi RP, Gupta KC (2007) Photoregulation of drug release in azo-dextran nanogels. Int J Pharm 342:184–193

    Article  CAS  PubMed  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Lange R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechol 2:751–760

    Article  CAS  Google Scholar 

  • Peiris PM, Bauer L, Toy R, Tran E, Pansky J, Doolittle E, Schmidt E, Hayden E, Mayer A, Keri RA, Griswold MA, Karathanasis E (2012) Enhanced delivery of chemotherapy to tumors using a multicomponent nanochain with radio-frequency-tunable drug release. ACS Nano 6(5):4157–4168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng ZA, Peng X (2002) Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc 124:3343–3353

    Article  CAS  PubMed  Google Scholar 

  • Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation-I methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2:8–21

    Article  Google Scholar 

  • Prato M (1997) [60] Fullerene chemistry for materials science applications. J Mater Chem 7:1097–1109

    Article  Google Scholar 

  • Qin SY, Feng J, Rong L, Jia HZ, Chen S, Liu XJ et al (2014) Theranostic GO based nanohybrid for tumor induced imaging and potential combinational tumor therapy. Small 10:599–608

    Article  CAS  PubMed  Google Scholar 

  • Quintanar-Guerrero D, Alle’mann E, Fessi H, Doelker E (1998) Preparation techniques and mechanism of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 24:1113–1128

    Article  CAS  PubMed  Google Scholar 

  • Rabinarayan P, Padilama S (2010) Production of solid lipid nanoparticles-drug loading and release mechanism. J Chem Pharm Res 2:211–227

    Google Scholar 

  • Reddy N, Reddy R, Jiang Q (2015) Crosslinking biopolymers for biomedical applications. Trends Biotechnol 33(6):362–369

    Article  CAS  PubMed  Google Scholar 

  • Rehman M, Ihsan A, Madni A, Bajwa SZ, Shi D, Webster TJ, Khan WS (2017) Solid lipid nanoparticles for thermoresponsive targeting: evidence from spectrophotometry, electrochemical, and cytotoxicity studies. Int J Nanomedicine 12:8325–8336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis CP, Neufeld RJ, Ribeiro AJ, Viega F (2005) Insulin-alginate nanospheres: influence of calcium on polymer matrix properties. Proceedings of the 13th International Workshop on Bioencapsulation. Kingston, Ontario, Canada: QueenTs University

    Google Scholar 

  • Riaz M, Riaz M, Zhang X et al (2018) Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. Int J Mol Sci 19(1):195

    Article  Google Scholar 

  • Rigogliuso S, Sabatino MA, Adamo G, Grimaldi N, Dispenza C, Ghersi G (2012) Polymeric nanogels: Nanocarriers for drug delivery application. Chem Eng Trans 27:247–252

    Google Scholar 

  • Rolland A, Gibassier D, Sado P, Le Verge R (1986) Purification et proprie’te’sphysico-chimiques des suspensions de nanoparticulesdepolyme’re. J Pharm Belg 41:94–105

    CAS  Google Scholar 

  • Rosenblum D, Joshi N, Tao W, Karp JM, Peer D (2018) Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 9:1410

    Article  PubMed  PubMed Central  Google Scholar 

  • Sacchetto C, Liu-Bryan R, Magrini A, Rosato N, Bottini N, Bottini M (2014) Glycol-modified single-walled carbon nanotubes for intra-articular delivery to chondrocytes. ACS Nano 8:12280–12291

    Article  Google Scholar 

  • Sahiner N, Alb AM, Graves R, Mandal T, McPherson GL, Reed WF, John VT (2007) Core-shell nanohydrogel structures as tunable delivery systems. Polymer (Guildf) 48:704–711

    Article  CAS  Google Scholar 

  • Sailaja A, Amareshwar P (2011) Preparation of chitosan coated nanoparticles by emulsionpolymerization technique. Asian J Pharm Clin Res 4(Suppl 1):73–74

    Google Scholar 

  • Schuster DI, Wilson SR, Kirschner AN et al (2000) Evaluation of the anti-HIV potency of a water-soluble dendrimeric fullerene. Proc Electrochem Soc 9:267–270

    Google Scholar 

  • Seijo B, Fattal E, Roblot-Treupel L, Couvreur P (1990) Design of nanoparticles of less than 50 nm diameter: preparation, characterization and drug loading. Int J Pharm 62:1–7

    Article  CAS  Google Scholar 

  • Sershen SR, Westcott SL, Halas NJ, West JL (2000) Temperature sensitive polymer–nanoshell composites for photothermally modulated delivery. J Biomed Mater Res 51:293–298

    Article  CAS  PubMed  Google Scholar 

  • Sha L, Wang D, Mao Y, Shi W, Gao T, Zhao Q, Wang S (2018) Hydrophobic interaction mediated coating of pluronics on mesoporous silica nanoparticle with stimuli responsiveness for cancer therapy. Nanotechnology 29(34):345101

    Article  PubMed  Google Scholar 

  • Sharma A, Garg T, Aman A, Panchal K, Sharma R, Kumar S, Markandeywar T (2016) Nanogel-an advanced drug delivery tool: current and future. Artif Cells Nanomed Biotechnol 44:165–177

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Wang B, Wang L, Lu T, Fu Y, Zhang H, Zhang Z (2016) Fullerene (C 60 )-based tumor-targeting nanoparticles with “off-on” state for enhanced treatment of cancer. J Control Release 235:245–258

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Su Y, Liu W, Chang J, Zhang Z (2017) A nanoliposome-based photoactivable drug delivery system for enhanced cancer therapy and overcoming treatment resistance. Int J Nanomedicine 12:8257–8275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soni G, Yadav KS (2016) Nanogels as potential nanomedicine carrier for treatment of cancer: a mini review of the state of the art. Saudi Pharm J 24:133–139

    Article  PubMed  Google Scholar 

  • Sosnik A, Seremeta K (2017) Polymeric hydrogels as technology platform for drug delivery applications. Gels 3(3):25

    Article  PubMed Central  Google Scholar 

  • Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotubepolymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sc 35(3):357–401

    Article  CAS  Google Scholar 

  • Sreejivungsa K, Suchaichit N, Moosophon P, Chompoosor A (2016) Light-regulated release of entrapped drugs from photoresponsive gold nanoparticles. J Nanomater 2016:7 pages

    Google Scholar 

  • Sun K, You C, Wang S, Gao Z, Wu H, Tao WA, Sun B (2018) NIR stimulus-responsive Core-shell type nanoparticles based on photothermal conversion for enhanced antitumor efficacy through chemo-photothermal therapy. Nanotechnology 29(28):285302

    Article  PubMed  Google Scholar 

  • Svenson S, Chauhan AS (2008) Dendrimers for enhanced drug solubilization. Nanomedicine 3:679–702

    Article  CAS  PubMed  Google Scholar 

  • Szoka F Jr (1980) Annu Rev Biophys Bioeng 9:467–508

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Wu T, Tang ZW, Xiao JY, Zhuo RX, Shi B, Liu CJ (2016) Water-soluble photoluminescent fullerene capped mesoporous silica for pH-responsive drug delivery and bioimaging. Nanotechnology 27(31):315104

    Article  PubMed  Google Scholar 

  • Tomalia DA, Reyna LA, Svenson S (2007) Biochem Soc Trans 35:61–67

    Article  CAS  PubMed  Google Scholar 

  • Tonelli FM, Goulart VA, Gomes KN, Ladeira MS, Santos AK, Lorençon E et al (2015) Graphene-based nanomaterials: biological and medical applications and toxicity. Nanomedicine (Lond) 10:2423–2450

    Article  CAS  Google Scholar 

  • Tran S, DeGiovanni PJ, Piel B, Rai P (2017) Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med 6(1):44

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsang SC, Chen YK, Harris PJF, Green MLH (1994) A simple chemical method of opening and filling carbon nanotubes. Nature 372(6502):159–162

    Article  CAS  Google Scholar 

  • Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H (2016) Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 107:163–175

    Article  CAS  PubMed  Google Scholar 

  • Vauthier C, Couvreur P (2000) Development of polysaccharide nanoparticles as novel drug carrier systems. In: Wise DL (ed) Handbook of pharmaceutical controlled release technology. Marcel Dekker, New York7, pp 413–429

    Google Scholar 

  • Wahajuddin, Arora (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 2012(7):3445–34712

    Google Scholar 

  • Wang F, Wang YC, Dou S, Xiong MH, Sun TM, Wang J (2011) Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 5:3679–3692

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wu L, Reinhard BM (2012) Scavenger receptor mediated endocytosis of silver nanoparticles into J774A.1 macrophages is heterogeneous. ACS Nano 6:7122–7132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers 3(3):1215–1242

    Article  CAS  Google Scholar 

  • Watermann A, Brieger J (2017) Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nano 7(7):189

    Google Scholar 

  • Wei H, Cheng SX, Zhang XZ, Zhuo RX (2009) Thermosensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog Polym Sci 34(9):893–910

    Article  CAS  Google Scholar 

  • Westesen K, Siekmann B (1996) Biodegradable colloidal drug carrier systems based on solid lipids. In: Benita S (ed) Microencapsulation methods and industrial applications. Marcel Dekkar, Inc., New York

    Google Scholar 

  • Yan M, Ge J, Liu Z, Ouyang P (2006) Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability. J Am Chem Soc 128:11008–11009

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Chen Y, Zhang ZH, Han X (2016) Stimuli-responsive block copolymer-based assemblies for cargo delivery and theranostic applications. Polymers 8(7):268

    Article  PubMed Central  Google Scholar 

  • Yoo HS, Park TG (2001) Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA–PEG block copolymer. J Control Release 70(1-2):63–70

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka T, Hashida M, Muranishi S, Sezaki H (1981) Specific delivery of mitomycin C to the liver, spleen, and lung: nano- and microspherical carriers of gelatin. Int J Pharm 8:131–141

    Article  Google Scholar 

  • You J, Zhang G, Li C (2010) Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 4(2):1033–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhi Z, Jiang T, Zhang J, Wang Z, Wang S (2010) Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. J Control Release 145(3):257–263

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Han L, Zhang Y, Chang YQ, Chen XW, He RH, Wang JH (2016) Glutathione-mediated mesoporous carbon as a drug delivery nanocarrier with carbon dots as a cap and fluorescent tracer. Nanotechnology 27(35):355102

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varalakshmi, B., Karpagam, T., Anand, A.V., Balamuralikrishnan, B. (2022). Nanoscale Smart Drug Delivery Systems and Techniques of Drug Loading to Nanoarchitectures. In: Krishnan, A., Ravindran, B., Balasubramanian, B., Swart, H.C., Panchu, S.J., Prasad, R. (eds) Emerging Nanomaterials for Advanced Technologies. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-80371-1_2

Download citation

Publish with us

Policies and ethics