Skip to main content

Recent Developments in Nanotechnological Interventions for Pesticide Remediation

  • Chapter
  • First Online:
Emerging Nanomaterials for Advanced Technologies

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 893 Accesses

Abstract

Due to the rapid development in urbanization as well as industrial sector, a large number of pollutants and toxic products are generated into to the environment which has raised the concern in developing and developed nations round the world. In the recent times, the utilization of nanotechnology-based approaches has highly proved to be efficient for the detection, degradation, and removal of hazardous pesticides from the contaminated sites. The use of nanomaterials exhibit unique physicochemical properties, and hence they have received much attention among the researchers in arena of environmental bioremediation. This chapter extensively covers the recent progress and understanding in the field of nanobioremediation and also its future perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: A novel tool for a green biotechnology? In: Fungal Nanobionics: Principles and Applications (eds. Prasad R, Kumar V, Kumar M and Wang S), Springer Singapore Pte Ltd. 61–87

    Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003a) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14(7):824

    CAS  Google Scholar 

  • Ahmad PM, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003b) Colloids Surf B 28:313

    CAS  Google Scholar 

  • Alani F, Moo-Young M, Anderson W (2012) World J Microbiol Biotechnol 28:1081

    CAS  PubMed  Google Scholar 

  • Amalraj A, Pius A (2015) Photocatalytic degradation of monocrotophos and chlorpyrifos in aqueous solution using TiO2 under UV radiation. J Water Process Eng 7:94–101

    Google Scholar 

  • Antonelli DM, Ying JY (1995) Synthesis of hexagonally packed mesoporous TiO2 by a modified sol–gel method. Angew Chem Int Ed 34:2014–2017

    CAS  Google Scholar 

  • Anuradha J, Abbasi T, Abbasi SA (2015) An eco-friendly method of synthesizing gold nanoparticles using an otherwise worthless weed pistia (Pistiastratiotes L.). J Adv Res 6(5):711–720

    CAS  PubMed  Google Scholar 

  • Arcon I, Piccolo O, Paganelli S, Baldi F (2012) Biometals 25(5):875

    CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

  • Balagurunathan R, Radhakrishnan M, Rajendran RB, Velmurugan D (2011) Indian J Biochem Biophys 48:331

    CAS  PubMed  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Colloids Surf B Biointerfaces 68:88

    CAS  PubMed  Google Scholar 

  • Bapat G, Labade C, Chaudhari A, Zinjarde S (2016) Silica nanoparticle based techniques for extraction, detection, and degradation of pesticides. Adv Colloid Interf Sci 237:1–14

    CAS  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: Emerging trend in insect pest control. In: Advances and Applications through Fungal Nanobiotechnology (ed. Prasad R), Springer International Publishing Switzerland 307–319

    Google Scholar 

  • Binupriya AR, Sathishkumar M, Vijayaraghavan K, Yun SI (2010) J Hazard Mater 177:539

    CAS  PubMed  Google Scholar 

  • Bond GC (1997) In: Ertl G, Knozinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis. VCH, Weinheim, pp 752–770

    Google Scholar 

  • Boruah PK, Sharma B, Hussain N, Das MR (2016) Magnetically recoverable Fe3O4/graphene nanocomposite towards efficient removal of triazine pesticides from aqueous solution: investigation of the adsorption phenomenon and specific ion effect. Chemosphere 168:1–10

    Google Scholar 

  • Boubbou KE, Schofield DA, Landry CC (2012) Enhanced enzymatic activity of OPH in ammonium-functionalized mesoporous silica: surface modification and pore effects. J Phys Chem C 116:17501–17506

    Google Scholar 

  • Buiculescu R, Hatzimarinaki M, Chaniotakis NA (2010) Biosilicated CdSe/ZnS quantum dots as photoluminescent transducers for acetylcholinesterase-based biosensors. Anal Bioanal Chem 398:3015–3021

    Google Scholar 

  • Canevari TC, Prado TM, Cincotto FH, Machado SAS (2016) Immobilization of ruthenium phthalocyanine on silica-coated multi-wall partially oriented carbon nanotubes: electrochemical detection of fenitrothion pesticide. Mater Res Bull 76:41–47

    CAS  Google Scholar 

  • Chaturvedi V, Verma P (2015) Bioresour Bioproc 2:18

    Google Scholar 

  • Chen YL, Tuan HY, Tien CW (2009) Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli. Biotechnol Prog 25:1260–1266

    CAS  PubMed  Google Scholar 

  • Chen Z, Ren X, Tang F (2013) Optical detection of acetylcholine esterase based on CdTe quantum dots. Chin Sci Bull 58:2622–2627

    CAS  Google Scholar 

  • Das A, Singh J, Yogalakshmi KN (2017) Laccase immobilized magnetic iron nanoparticles: fabrication and its performance evaluation in chlorpyrifos degradation. Int Biodeterior Biodegr 117:183–189

    CAS  Google Scholar 

  • Dehaghi SM, Rahmanifar B, Moradi AM, Azar PA (2014) Removal of permethrin pesticide from water by chitosanezinc oxide nanoparticles composite as an adsorbent. J Saudi Chem Soc 18:348–355

    Google Scholar 

  • Dimitrov D (2006) Colloids Surf A Physicochem Eng Asp 8:282

    Google Scholar 

  • Ding YS, Zhang TL (2008) Using Chou’s pseudo amino acid composition to predict subcellular localization of apoptosis proteins: an approach with immune genetic algorithm-based ensemble classifier. Pattern Recogn Lett 29(13):1887–1892

    CAS  Google Scholar 

  • Du D, Huang X, Cai J, Zhang A (2007) Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor. Biosens Bioelectron 23, No. 2:285–289

    Google Scholar 

  • Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M (2011) Appl Microbiol Biotechnol 90:1609

    PubMed  Google Scholar 

  • Elcey C, Kuruvilla AT, Thomas D (2014) Int J Curr Microbiol Appl Sci 3:408

    CAS  Google Scholar 

  • Fiorilli S, Rivoira L, Calì G, Appendini M, Bruzzoniti MC, Coïsson M, Onida B (2017) Iron oxide inside SBA-15 modified with amino groups as reusable adsorbent for highly efficient removal of glyphosate from water. Appl Surf Sci 411:457–465

    CAS  Google Scholar 

  • Firdoz S, Ma F, Yue X, Dai Z, Kumar A, Jiang B (2010) A novel Amperometric biosensor based on single walled carbon nanotubes with acetylcholine esterase for the detection of Carbaryl Pestcide in water. Talanta 83(1):269–273

    CAS  PubMed  Google Scholar 

  • Fulekar MH (2010) Nanotechnology: importance and applications. IK International Pvt Ltd

    Google Scholar 

  • Gamiz B, Hermosin MC, Cornejo J, Celis R (2015) Hexadimethrine-montmorillonite nanocomposite: characterization and application as a pesticide adsorbent. Appl Surf Sci 332:606–613

    CAS  Google Scholar 

  • Garai-Ibabe G, Saa L, Pavlov V (2014) Thiocholine mediated stabilization of in situ produced CdS quantum dots: application for the detection of acetylcholinesterase activity and inhibitors. Analyst 139:280–284

    CAS  PubMed  Google Scholar 

  • Grieshaber D, MacKenzie R, Voros J, Reimhult E (2008) Electrochemical biosensors-sensor principles and architectures. Sensors 8(3):1400–1458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M, Weng X, Wang X, Chen Z (2017) Biosynthesized iron-based nanoparticles used as a heterogeneous catalyst for the removal of 2,4-dichlorophenol. Sep Purif Technol 175:222–228

    CAS  Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SR, Muniyandi J, Hariharan N, Eom SH (2009) Colloids Surfaces B: Biointerfaces 74:328–335

    CAS  PubMed  Google Scholar 

  • Hou R, Pang S, He L (2015) In situ SERS detection of multi-class insecticides on plant surfaces. Analytical Methods 7(15):6325–6330

    Google Scholar 

  • Hsu CW, Lin ZY, Chan TY, Chiu TC, Hu CC (2017) Oxidized multiwalled carbon nanotubes decorated with silver nanoparticles for fluorometric detection of dimethoate. Food Chem 224:353–358

    CAS  PubMed  Google Scholar 

  • Ibrahim WAW, Ismail WNW, Sanagi MM (2013) Selective and simultaneous solid phase extraction of polar and non-polar organophosphorus pesticides using sol-gel hybrid silica-based sorbent. J Teknologi Sci Eng 62:83–87

    Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363.6430:603–605

    Google Scholar 

  • Jamdagni P, Khatri P, Rana JS (2016) J King Saud Univ-Sci 30:168. https://doi.org/10.1016/j.jksus.2016.10.002

    Article  Google Scholar 

  • Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Techn 86(3):682–689. https://doi.org/10.1007/s10971-018-4666-2

  • Kamigaito O (1991) What can be improved by nanometer composites? J Jpn Soc Powder Powder Metall 38(3):315–321

    CAS  Google Scholar 

  • Kaul R, Kumar P, Burman U, Joshi P, Agrawal A, Raliya R, Tarafdar (2012) J, Mater Sci-Poland 30:254

    CAS  Google Scholar 

  • Kaur T, Sraw A, Wanchoo RK, Toor AP (2016) Visible elight induced photocatalytic degradation of fungicide with Fe and Si doped TiO2 nanoparticles. Mater Today Proc 3:354–361

    Google Scholar 

  • Kavitha KS, Baker S, Rakshith D, Kavitha HU, Rao HCY, Harini BP, Satish S (2013) Int Res J Bio Sci 2:66

    Google Scholar 

  • Koushik D, Gupta SS, Maliyekkal SM, Pradeep T (2016) Rapid dehalogenation of pesticides and organics at the interface of reduced graphene oxide-silver nanocomposite. J Hazard Mater 308:192–198

    CAS  PubMed  Google Scholar 

  • Kumar D, Karthik L, Kumar G, Roa KB (2011a) Pharmacologyonline 3:31100–31111

    Google Scholar 

  • Kumar KP, Paul W, Sharma CP (2011b) Process Biochem 46:2007

    CAS  Google Scholar 

  • Kumar KM, Mandal BK, Sinha M, Krishnakumar V (2012) Spectrochim Acta A Mol Biomol Spectrosc 86:490

    PubMed  Google Scholar 

  • Lam SJ, Wong EHH, Boyer C, Qiao GG (2018) Prog Polym Sci 76:40. https://doi.org/10.1016/j.progpolymsci.2017.07.007

  • Laokul P, Maensiri S (2009) J Optoelecron Adv Mat 11:857

    CAS  Google Scholar 

  • Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Environ Sci Technol 42:4927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lia Z, Wang Y, Ni Y, Kokot S (2014) Unmodified silver nanoparticles for rapid analysis of the organophosphorus pesticide, dipterex, often found in different waters. Sens Actuator B 193:205–211

    Google Scholar 

  • Lisa M, Chouhan RS, Vinayaka AC, Manonmani HK, Thakur MS (2009) Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichloroethane: an organochlorine pesticide. Biosens Bioelectron 25:224–227

    CAS  PubMed  Google Scholar 

  • Liu WJ, Qian TT, Jiang H (2014) Bimetallic Fe nanoparticles: recent advances in synthesis and application in catalytic elimination of environmental pollutants. Chem Eng J 236:448–463

    CAS  Google Scholar 

  • Luckham RE, Brennan JD (2010) Bioactive paper dipstick sensors for acetylcholinesterase inhibitors based on solegel/enzyme/gold nanoparticle composites. Analyst 135:2028–2035

    CAS  PubMed  Google Scholar 

  • Luo Q, Li Y, Zhang M, Qiu P, Deng Y (2017) A highly sensitive, dual-signal assay based on rhodamine B covered silver nanoparticles for carbamate pesticides. Chin Chem Lett 28:345–349

    CAS  Google Scholar 

  • Malarkodi C, Rajeshkumar S, Annadurai G (2017) Detection of environmentally hazardous pesticide in fruit and vegetable samples using gold nanoparticles. Food Control 80:11–18

    CAS  Google Scholar 

  • Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2016) Crit Rev Microbiol 42:209

    CAS  PubMed  Google Scholar 

  • Mansouriieh N, Sohrabi MR, Khosravi M (2019) Optimization of profenofos organophosphorus pesticide degradation by zero-valent bimetallic nanoparticles using response surface methodology. Arab J Chem 12(8):2524–2532

    CAS  Google Scholar 

  • Mazumdar H, Haloi N (2011) J Microbiol Biotechnol Res 1:39

    CAS  Google Scholar 

  • Mishra S, Dixit S, Soni S (2015) Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications, vol 20, p 141. https://doi.org/10.1002/9781118677629.ch7

    Book  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajaykmat PV, Alam M, Sastry M, Kumar R (2001) Angew Chem Int Ed 40:3585

    CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3(5):461–463

    CAS  PubMed  Google Scholar 

  • Narayanan KB, Sakthivel N (2011) J Hazard Mater 189:519

    CAS  PubMed  Google Scholar 

  • Nascimento MA, Lopes RP, Cruz JC, Silva AA, Lima CF (2016) Sulfentrazone dechlorination by iron-nickel bimetallic nanoparticles. Environ Pollut 211:406–413

    CAS  PubMed  Google Scholar 

  • Oliveira AC, Mascaro LH (2011) Evaluation of Ace- tylcholinesterase biosensor based on carbon nanotube paste in the determination of Chlorphenvinphos. Inter J Anal Chem:Article ID 974216

    Google Scholar 

  • Ouali A, Belaroui LS, Bengueddach A, Galindo AL, Pena A (2015) Fe2O3epalygorskite nanoparticles, efficient adsorbates for pesticide removal. Appl Clay Sci 115:67–75

    CAS  Google Scholar 

  • Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ (2011) IET Nanobiotechnol 5:69

    CAS  PubMed  Google Scholar 

  • Pasca RD, Mocanu A, Cobzac SC, Petean I, Horovitz O, Tomoaia-Cotisel M (2014) Biogenic Syntheses of Gold Nanoparticles Using Plant Extracts. Part Sci Technoly 32(2):131–137

    Google Scholar 

  • Phumying S, Labuayai S, Swatsitang E, Amornkitbamrung V, Maensiri S (2013) Mat Res Bull 48:2060

    Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961, 2014, https://doi.org/10.1155/2014/963961

  • Prasad R (2016) Advances and Applications through Fungal Nanobiotechnology. Springer, International Publishing Switzerland (ISBN: 978-3-319-42989-2)

    Google Scholar 

  • Prasad R (2017) Fungal Nanotechnology: Applications in Agriculture, Industry, and Medicine. Springer Nature Singapore Pte Ltd. (ISBN 978-3-319-68423-9)

    Google Scholar 

  • Prasad R, Aranda E (2018) Approaches in Bioremediation. Springer International Publishing. https://www.springer.com/de/book/9783030023683

  • Prasad R, Kumar V, Kumar M, Wang S (2018) Fungal Nanobionics: Principles and Applications. Springer Nature Singapore Pte Ltd. (ISBN 978-981-10-8666-3). https://www.springer.com/gb/book/9789811086656

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

  • Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. Journal of Nanoparticles https://doi.org/10.1155/2013/431218

  • Qu Y, Sun Q, Xiao F, Shi G, Jin L (2010) Layer- by-layer self-assembled Acetylcholienesterase/ PAMAM- Au on CNTs modified electrode for sensing pesticides. Bioelectrochemistry 77(2):139–144

    CAS  PubMed  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO Nanoparticle Biosynthesis and Its Effect on Phosphorous-Mobilizing Enzyme Secretion and Gum Contents in Clusterbean (Cyamopsis tetragonoloba L.). Agribiol Res 2(1):48–57

    Google Scholar 

  • Raliya R, Tarafdar JC (2014) Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. Int Nano Lett 4:1

    Google Scholar 

  • Rasheed T, Bilal M, Iqbal HMN, Li C (2017) Colloids Surf B 158:408. https://doi.org/10.1016/j.colsurfb.2017.07.020

  • Rawtani D, Agrawal YK (2012) Halloysite as support matrices: a review. Emerg Mater Res 1(4):212–220

    CAS  Google Scholar 

  • Rawtani D, Agrawal YK, Prajapati P (2013) Interaction behavior of DNA with halloysite nanotubeesilver nanoparticle-based composite. BioNano Sci 3:73–78

    Google Scholar 

  • Rosbero TMS, Camacho DH (2017) Green preparation and characterization of tentacle-like silver/copper nanoparticles for catalytic degradation of toxic chlorpyrifos in water. J Environ Chem Eng 5:2524–2532

    CAS  Google Scholar 

  • Saa L, Virel A, Sanchez-Lopez J, (2010) Pavlov V. Analytical applications of enzymatic growth of quantum dots. Chem Eur J 16:6187–6192

    CAS  PubMed  Google Scholar 

  • Saifuddin N, Nian CY, Zhan LW, Ning KX (2011) Chitosan-silver nanoparticles composite as point-of-use drinking water filtration system for household to remove pesticides in water. Asian J Biochem 6(2):142–159

    CAS  Google Scholar 

  • Saglam N, Korkusuz, F, Prasad R (2021) Nanotechnology Applications in Health and Environmental Sciences. Springer International Publishing (ISBN: 978-3-030-64410-9). https://www.springer.com/gp/book/9783030644093

  • San Roman I, Alonso ML, Bartolom EL, Galdames A, Goiti E, Ocejo M, Moragues M, Alonso RM, Vilas JL (2013) Relevance study of bare and coated zero valent iron nanoparticles for lindane degradation from its by-product monitorization. Chemosphere 93:1324–1332

    CAS  PubMed  Google Scholar 

  • Saraji M, Jafari M, Mossaddegh M (2016) Halloysite nanotubes-titanium dioxide as a solid-phase microextraction coating combined with negative corona discharge-ion mobility spectrometry for the determination of parathion. Anal Chim Acta 926:55–62

    CAS  PubMed  Google Scholar 

  • Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3(2):168–171

    CAS  PubMed  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) J Colloid Interface Sci 2:496

    Google Scholar 

  • Sharma AK, Tiwari RK, Gaur MS (2016) Nanophotocatalytic UV degradation system for organophosphorus pesticides in water samples and analysis by Kubista model. Arab J Chem 9:1755–1764

    Google Scholar 

  • Sharma P, Sablok K, Bhalla V, Suri CR (2011) A novel disposable electrochemical immunosensor for phenyl urea herbicide diuron. Biosensors and Bioelectronics 26(10):4209–4212

    Google Scholar 

  • Shash S, Ramanan VV, Prasad R (2019) Sustainable Green Technologies for Environmental Management. Springer Singapore (ISBN: 978-981-13-2772-8) https://www.springer.com/la/book/9789811327711

    Google Scholar 

  • Shen W, Mu Y, Wang B, Ai Z, Zhang L (2017) Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles. Appl Surf Sci 393:316–324

    Google Scholar 

  • Silver S (2003) FEMS Microbiol Rev 27(2–3):341–353

    CAS  PubMed  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30(3):428–471

    CAS  PubMed  Google Scholar 

  • Sinha S, Paul ND, Halder N, Sengupta D, Patra SK (2015) Appl Nanosci 5:703

    CAS  Google Scholar 

  • Srivastava S, Usmani Z, Atanasov AG, Singh VK, Singh NP, Abdel-Azeem AM, Prasad R, Gupta G, Sharma M, Bhargava A (2021) Biological nanofactories: Using living forms for metal nanoparticle synthesis. Mini-Reviews in Medicinal Chemistry 21(2):245–265

    Google Scholar 

  • Street A, Sustich R, Duncan J, Savage N (2014) Nanotechnology applications for clean water: solutions for improving water quality, 2nd edn. Elsevier, Waltham

    Google Scholar 

  • Subbaiya R, Shiyamala M, Revathi K, Pushpalatha R, Selvam MM (2014) Int J Curr Microbiol App Sci 3:83

    CAS  Google Scholar 

  • Sun H, Zhang QF, Wu JL (2006) Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure. Nanotechnology 17(9):2271

    CAS  Google Scholar 

  • Sun X, Liu B, Xia K (2011) A sensitive and regenerable biosensor for organophosphate pesticide based on self‐assembled multilayer film with CdTe as fluorescence probe. Luminescence 26(6):616–621

    Google Scholar 

  • Tanwar S, Paidi SK, Prasad R, Pandey R, Barman I (2021) Advancing Raman spectroscopy from research to clinic: Translational potential and challenges. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. https://doi.org/10.1016/j.saa.2021.119957

  • Taranath TC, Patil BN (2016) Int J Mycobacteriol 5:197. https://doi.org/10.1016/j.ijmyco.2016.03.0041

    Article  PubMed  Google Scholar 

  • Thangadurai D, Sangeetha J, Prasad R (2020) Nanotechnology for Food, Agriculture, and Environment. Springer International Publishing (ISBN 978-3-030-31937-3). https://www.springer.com/gp/book/9783030319373

  • Tosco T, Papini MP, Viggi CC, Sethi R (2014) Nanoscale zerovalent iron particles for groundwater remediation: a review. J Clean Prod 77:10–21

    CAS  Google Scholar 

  • Tripathi V, Fraceto LF, Abhilash PC (2015) Sustainable clean-up technologies for soils contaminated with multiple pollutants: Plant-microbe-pollutant and climate nexus. Ecol Eng 82:330–335

    Google Scholar 

  • Tsai CS, Yu TB, Chen CT (2005) Gold nanoparticle-based competitive colorimetric assay for detection of proteineprotein interactions. Chem Commun 0:4273–4275

    CAS  Google Scholar 

  • Valera E, Ramon-Azcon J, Sanchez FJ, Marco MP, Rodriguez A (2008) Conductimetric Immunosensor for Atrazine detection based on antibodies labelled with gold nanoparticles. Sensors Actuators B 134(1):95–103

    CAS  Google Scholar 

  • Wang X, Mu Z, Shangguan F, Liu R, Pu Y, Yin L (2013) Simultaneous detection of Fenitrothion and Chlorpyrifos-Methyl with a photonic suspension array. PLOS One 8 (6):e66703. https://doi.org/10.1371/journal.pone.0066703

    Google Scholar 

  • Wang B, Zhang L, Zhou X (2014) Synthesis of silver nanocubes as a SERS substrate for the determination of pesticide paraoxon and thiram. Spectrochim Acta Mol Biomol Spectrosc 121:63–69

    CAS  Google Scholar 

  • Wells M (2007) Vanishing bees threaten U.S. Crops. BBC News, London

    Google Scholar 

  • Xu J-C, Mei L, Guo X-Y, Li H-U (2005) J Mol Catal A Chem 226:123

    CAS  Google Scholar 

  • Yadav KK (2017) J Mater Environ Sci 8:740

    CAS  Google Scholar 

  • Yu T, Ying T-Y, Song Y-Y, Li Y-J, Wu F-H, Dong X-Q, Shen J-S (2014) A highly sensitive sensing system based on photoluminescent quantum dots for highly toxic organophosphorus compounds. RSC Adv 4:8321–8327

    CAS  Google Scholar 

  • Zaleska-Medynska A, Marchelek M, Diak M, Grabowska E (2016) Noble metalbased bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv Colloid Interf Sci 229:80–107

    CAS  Google Scholar 

  • Zhang W-X (2003) J Nanopart Res 5:323

    CAS  Google Scholar 

  • Zheng Z, Zhou Y, Li X, Liua S (2011) Tang Z, Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots. Biosens Bioelectron 26:3081–3085

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the Director of IASST for all the support. This work is funded by DST Women Scientist-A scheme under the Government of India, bearing the reference No. (SR/WOS-A/LS-127/2018(G).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, R., Thakur, D. (2022). Recent Developments in Nanotechnological Interventions for Pesticide Remediation. In: Krishnan, A., Ravindran, B., Balasubramanian, B., Swart, H.C., Panchu, S.J., Prasad, R. (eds) Emerging Nanomaterials for Advanced Technologies. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-80371-1_19

Download citation

Publish with us

Policies and ethics