Skip to main content

Ultrafine-Grained Materials

  • Chapter
  • First Online:
Advanced Materials

Abstract

This chapter discusses about emerging advanced materials: ultrafine grain materials. The concept of this material has been discussed with respect to the grain size and grain boundary behavior toward the low- and high-temperature processing. Different superplastic deformation processes such as equal-channel angular pressing, high-pressure torsion, accumulative roll bonding, friction stir processing, multidirectional forging, cyclic extrusion and compression, repetitive corrugation and straightening, twist extrusion along with the machining process have been discussed. Currently, revealed properties and the developing product have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valiev, R.Z., Estrin, Y., Horita, Z.: Producing bulk ultrafine-grained materials by severe plastic deformation. JOM. 58, 33–39 (2006). https://doi.org/10.1007/s11837-006-0213-7

    Article  Google Scholar 

  2. Huang, Y., Langdon, T.G.: Advances in ultrafine-grained materials. Mater. Today. 16(3), 85–93 (2013). https://doi.org/10.1016/j.mattod.2013.03.004

    Article  CAS  Google Scholar 

  3. Tsuji, N., Saito, Y., Lee, S.H., Minamino, Y.: ARB (Accumulative Roll-Bonding) and other new techniques to produce bulk ultrafine grained materials. Adv. Eng. Mater. 5(5), 338–344 (2003). https://doi.org/10.1002/adem.200310077

    Article  CAS  Google Scholar 

  4. Terence, G.L.: Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater. 61(19), 7035–7059 (2013). https://doi.org/10.1016/j.actamat.2013.08.018

    Article  CAS  Google Scholar 

  5. Kawasaki, M., Langdon, T.G.: Review: achieving superplastic properties in ultrafine-grained materials at high temperatures. J. Mater. Sci. 51, 19–32 (2016). https://doi.org/10.1007/s10853-015-9176-9

    Article  CAS  Google Scholar 

  6. Nguyen, N.T., Asghari-Rad, P., Sathiyamoorthi, P., et al.: Ultrahigh high-strain-rate superplasticity in a nanostructured high-entropy alloy. Nat. Commun. 11, 2736 (2020). https://doi.org/10.1038/s41467-020-16601-1

    Article  CAS  Google Scholar 

  7. Cao, V.C., GongchengYao, L.J., Sokoluk, M., Wang, X., Ciston, J., Javadi, A., Guan, Z., De Rosa, I., Xie, W., Lavernia, E.J., Schoenung, J.M., Li, X.: Bulk ultrafine grained/nanocrystalline metals via slow cooling. Sci. Adv. 5(8), eaaw2398 (2019). https://doi.org/10.1126/sciadv.aaw2398

    Article  CAS  Google Scholar 

  8. Czerwinski, F.: Thermomechanical processing of metal feedstock for semisolid forming: a review. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 49, 3220–3257 (2018). https://doi.org/10.1007/s11663-018-1387-4

    Article  CAS  Google Scholar 

  9. Mughrabi, H., Höppel, H.W.: Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int. J. Fatigue. 32(9), 1413–1427 (2010). https://doi.org/10.1016/j.ijfatigue.2009.10.007

    Article  CAS  Google Scholar 

  10. Terence, G.L.: Ultrafine-grained materials: a personal perspective. Int. J. Mater. Res. 98(4), 251–254 (2007). https://doi.org/10.3139/146.101473

    Article  Google Scholar 

  11. See: http://damascus.free.fr/f_damas/f_quest/f_wsteel/indiaw.htm. 18.05.2020

  12. Bruder, E.: Formability of ultrafine grained metals produced by severe plastic deformation–an overview. Adv. Eng. Mater. 21(1), 1800316 (2019). https://doi.org/10.1002/adem.201800316

    Article  CAS  Google Scholar 

  13. Kawasaki, M.: Processing of ultrafine-grained materials through the application of severe plastic deformation. Metall. Mater. Trans. A. 42, 3035–3045 (2011). https://doi.org/10.1007/s11661-010-0501-2

    Article  CAS  Google Scholar 

  14. Kawasaki, M., Langdon, T.G.: Principles of superplasticity in ultrafine-grained materials. J. Mater. Sci. 42, 1782–1796 (2007). https://doi.org/10.1007/s10853-006-0954-2

    Article  CAS  Google Scholar 

  15. Luo, P., McDonald, D.T., Xu, W., Palanisamy, S., Dargusch, M.S., Xia, K.: A modified Hall–Petch relationship in ultrafine-grained titanium recycled from chips by equal channel angular pressing. Scr. Mater. 66(10), 785–788 (2012). https://doi.org/10.1016/j.scriptamat.2012.02.008

    Article  CAS  Google Scholar 

  16. Valiev, R.Z., Korznikov, A.V., Mulyukov, R.R.: Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng. A. 168(2), 141–148 (1993). https://doi.org/10.1016/0921-5093(93)90717-S

    Article  Google Scholar 

  17. Valiev, R.Z., Kozlov, E.V., Ivanov, Y.F., Lian, J., Nazarov, A.A., Baudelet, B.: Deformation behaviour of ultra-fine-grained copper. Acta. Metall. Mater. 42(7), 2467–2475 (1994). https://doi.org/10.1016/0956-7151(94)90326-3

    Article  CAS  Google Scholar 

  18. Hayes, R.W., Tellkamp, V., Lav, E.J., Hayes, R., Tellkamp, V., Lavernia, E.: Creep behavior of a cryomilled ultrafine-grained Al–4% Mg alloy. J. Mater. Res. 15(10), 2215–2222 (2000). https://doi.org/10.1557/JMR.2000.0318

    Article  CAS  Google Scholar 

  19. Kawasaki, M., Ahn, B., Kumar, P., Jang, J.-i., Langdon, T.G.: Nano- and micro-mechanical properties of ultrafine-grained materials processed by severe plastic deformation techniques. Adv. Eng. Mater. 19(1), 1600578 (2017). https://doi.org/10.1002/adem.201600578

    Article  CAS  Google Scholar 

  20. Saray, O., Purcek, G., Karaman, I., Maier, H.J.: Improvement of formability of ultrafine-grained materials by post-SPD annealing. Mater. Sci. Eng. A. 619(014), 119–128 (2014). https://doi.org/10.1016/j.msea.2014.09.016

    Article  CAS  Google Scholar 

  21. Iwahashi, Y., Furukawa, M., Horita, Z., et al.: Microstructural characteristics of ultrafine-grained aluminum produced using equal-channel angular pressing. Metall. Mater. Trans. A. 29, 2245–2252 (1998). https://doi.org/10.1007/s11661-998-0102-5

    Article  Google Scholar 

  22. Matsunoshita, H., Edalati, K., Furui, M., Horita, Z.: Ultrafine-grained magnesium–lithium alloy processed by high-pressure torsion: low-temperature superplasticity and potential for hydroforming. Mater. Sci. Eng. A. 640, 443–448 (2015). https://doi.org/10.1016/j.msea.2015.05.103

    Article  CAS  Google Scholar 

  23. Zherebtsov, S., Kudryavtsev, E., Kostjuchenko, S., Malysheva, S., Salishchev, G.: Strength and ductility-related properties of ultrafine grained two-phase titanium alloy produced by warm multiaxial forging. Mater. Sci. Eng. A. 536, 190–196 (2012). https://doi.org/10.1016/j.msea.2011.12.102

    Article  CAS  Google Scholar 

  24. Park, K.-T., Kwon, H.-J., Kim, W.-J., Kim, Y.-S.: Microstructural characteristics and thermal stability of ultrafine grained 6061 Al alloy fabricated by accumulative roll bonding process. Mater. Sci. Eng. A. 316(1–2), 145–152 (2001). https://doi.org/10.1016/S0921-5093(01)01261-8

    Article  Google Scholar 

  25. Segal, V.: Review: modes and processes of severe plastic deformation (SPD). Materials. 11, 1175 (2018). https://doi.org/10.3390/ma11071175

    Article  CAS  Google Scholar 

  26. Melicher, R.: Numerical simulation of plastic deformation of aluminiumworkpiece induced by ECAP technology. Appl. Comput. Mech. 3, 319–330 (2009)

    Google Scholar 

  27. Kim, H.S.: Finite element analysis of equal channel angular pressing using a round corner die. Mater. Sci. Eng. A. 315(1–2), 122–128 (2001). https://doi.org/10.1016/S0921-5093(01)01188-1

    Article  Google Scholar 

  28. Čížek, J., Procházka, I., Smola, B., Stulíková, I., Kužel, R., Matěj, Z., Cherkaska, V., Islamgaliev, R.K., Kulyasova, O.: Microstructure and thermal stability of ultra fine grained mg-based alloys prepared by high-pressure torsion. Mater. Sci. Eng. A. 462(1–2), 121–126 (2007). https://doi.org/10.1016/j.msea.2006.01.177

    Article  CAS  Google Scholar 

  29. Ning, J.-l., Courtois-Manara, E., Kurmanaeva, L., Ganeev, A.V., Valiev, R.Z., Kübel, C., Ivanisenko, Y.: Tensile properties and work hardening behaviors of ultrafine grained carbon steel and pure iron processed by warm high pressure torsion. Mater. Sci. Eng. A. 581, 8–15 (2013). https://doi.org/10.1016/j.msea.2013.05.008

    Article  CAS  Google Scholar 

  30. Milner, J.L., Abu-Farha, F., Bunget, C., Kurfess, T., Hammond, V.H.: Grain refinement and mechanical properties of CP-Ti processed by warm accumulative roll bonding. Mater. Sci. Eng. A. 561, 109–117 (2013). https://doi.org/10.1016/j.msea.2012.10.081

    Article  CAS  Google Scholar 

  31. Hofmann, D.C., Vecchio, K.S.: Submerged friction stir processing (SFSP): an improved method for creating ultra-fine-grained bulk materials. Mater. Sci. Eng. A. 402(1–2), 234–241 (2005). https://doi.org/10.1016/j.msea.2005.04.032

    Article  CAS  Google Scholar 

  32. Takayama, A., Yang, X., Miura, H., Sakai, T.: Continuous static recrystallization in ultrafine-grained copper processed by multi-directional forging. Mater. Sci. Eng. A. 478(1–2), 221–228 (2008). https://doi.org/10.1016/j.msea.2007.05.115

    Article  CAS  Google Scholar 

  33. Swaminathan, S., Shankar, M.R., Lee, S., Hwang, J., King, A.H., Kezar, R.F., Rao, B.C., Brown, T.L., Chandrasekar, S., Compton, W.D., Trumble, K.P.: Large strain deformation and ultra-fine grained materials by machining. Mater. Sci. Eng. A. 410–411, 358–363 (2005). https://doi.org/10.1016/j.msea.2005.08.139. ISSN 0921-5093

    Article  CAS  Google Scholar 

  34. Ensafi, M., Faraji, G., Abdolvand, H.: Cyclic extrusion compression angular pressing (CECAP) as a novel severe plastic deformation method for producing bulk ultrafine grained metals. Mater. Lett. 197, 12–16 (2017). https://doi.org/10.1016/j.matlet.2017.03.142

    Article  CAS  Google Scholar 

  35. Richert, M.W.: Features of cyclic extrusion compression: method, structure & materials properties Solid state phenomena, vol. 114, pp. 19–28. Trans Tech Publications, Ltd., Freienbach (2006). https://doi.org/10.4028/www.scientific.net/ssp.114.19

    Book  Google Scholar 

  36. Huang, J., Zhu, Y.T., Alexander, D.J., Liao, X., Lowe, T.C., Asaro, R.J.: Development of repetitive corrugation and straightening. Mater. Sci. Eng. A. 371(1–2), 35–39 (2004). https://doi.org/10.1016/S0921-5093(03)00114-X

    Article  CAS  Google Scholar 

  37. Beygelzimer, Y., Varyukhin, V., Synkov, S., Orlov, D.: Useful properties of twist extrusion. Mater. Sci. Eng. A. 503(1–2), 14–17 (2009). https://doi.org/10.1016/j.msea.2007.12.055

    Article  CAS  Google Scholar 

  38. Deng, W.J., Xia, W., Li, C., Tang, Y.: Ultrafine grained material produced by machining. Mater. Manuf. Processes. 25(6) (2010). https://doi.org/10.1080/10426910902748024

  39. Morehead, M., Yong Huang, K., Hartwig, T.: Machinability of ultrafine-grained copper using tungsten carbide and polycrystalline diamond tools. Int. J. Mach. Tools Manuf. 47(2), 286–293 (2007). https://doi.org/10.1016/j.ijmachtools.2006.03.014

    Article  Google Scholar 

  40. Fan, G.J., Choo, H., Liaw, P.K., Lavernia, E.J.: Plastic deformation and fracture of ultrafine-grained Al–Mg alloys with a bimodal grain size distribution. Acta Mater. 54(7), 1759–1766 (2006). https://doi.org/10.1016/j.actamat.2005.11.044

    Article  CAS  Google Scholar 

  41. Koch, C.C.: Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 49(7), 657–662 (2003). https://doi.org/10.1016/S1359-6462(03)00394-4

    Article  CAS  Google Scholar 

  42. Delincé, M., Bréchet, Y., Embury, J.D., Geers, M.G.D., Jacques, P.J., Pardoen, T.: Structure–property optimization of ultrafine-grained dual-phase steels using a microstructure-based strain hardening model. Acta Mater. 55(7), 2337–2350 (2007). https://doi.org/10.1016/j.actamat.2006.11.029

    Article  CAS  Google Scholar 

  43. Song, D., Ma, A.B., Jiang, J.H., Lin, P.H., Yang, D.H., Fan, J.F.: Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing. Corros. Sci. 53(1), 362–373 (2011). https://doi.org/10.1016/j.corsci.2010.09.044

    Article  CAS  Google Scholar 

  44. Miyamoto, H., Yuasa, M., Rifai, M., Fujiwara, H.: Corrosion behavior of severely deformed pure and single-phase materials. Mater. Trans. 60(7), 1243–1255 (2019). https://doi.org/10.2320/matertrans.MF201935

    Article  CAS  Google Scholar 

  45. Kim, H.S., Yoo, S.J., Ahn, J.W., Kim, D.H., Kim, W.J.: Ultrafine grained titanium sheets with high strength and high corrosion resistance. Mater. Sci. Eng. A. 258(29–30), 8479–8485 (2011). https://doi.org/10.1016/j.msea.2011.07.074

    Article  CAS  Google Scholar 

  46. Orłowska, M., Ura-Bińczyk, E., Olejnik, L., Lewandowska, M.: The effect of grain size and grain boundary misorientation on the corrosion resistance of commercially pure aluminium. Corros. Sci. 148, 57–70 (2019). https://doi.org/10.1016/j.corsci.2018.11.035

    Article  CAS  Google Scholar 

  47. Shimokawa, T., Tanaka, M., Kinoshita, K., Higashida, K.: Roles of grain boundaries in improving fracture toughness of ultrafine-grained metals. Phys. Rev. B. 83, 214113 (2011). https://doi.org/10.1103/PhysRevB.83.214113

    Article  CAS  Google Scholar 

  48. Li, Y.J., Zeng, X.H., Blum, W.: Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu. Acta Mater. 52(17), 5009–5018 (2004). https://doi.org/10.1016/j.actamat.2004.07.003

    Article  CAS  Google Scholar 

  49. Sauvage, X., Wilde, G., Divinski, S.V., Horita, Z., Valiev, R.Z.: Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater. Sci. Eng. A. 540, 1–12 (2012). https://doi.org/10.1016/j.msea.2012.01.080

    Article  CAS  Google Scholar 

  50. Vinogradov, A.: Mechanical properties of ultrafine-grained metals: new challenges and perspectives. Adv. Eng. Mater. 17(12), 1710–1722 (2015). https://doi.org/10.1002/adem.201500177. Special Issue: Bulk Nanostructured Materials, December

    Article  CAS  Google Scholar 

  51. Zhao, Y.H., Bingert, J.F., Zhu, Y.T., Liao, X.Z., Valiev, R.Z., Horita, Z., Langdon, T.G., Zhou, Y.Z., Lavernia, E.J.: Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density. Appl. Phys. Lett. 92(8) (2008). https://doi.org/10.1063/1.2870014

  52. Kobayashi, S., Tsurekawa, S., Watanabe, T., Palumbo, G.: Grain boundary engineering for control of sulfur segregation-induced embrittlement in ultrafine-grained nickel. Scr. Mater. 62(5), 294–297 (2010). https://doi.org/10.1016/j.scriptamat.2009.11.022

    Article  CAS  Google Scholar 

  53. Lu, K., Lu, L., Suresh, S.: Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science. 324(5925), 349–352 (2009). https://doi.org/10.1126/science.1159610

    Article  CAS  Google Scholar 

  54. Canadinc, D., Biyikli, E., Niendorf, T., Maier, H.J.: Experimental and numerical investigation of the role of grain boundary misorientation angle on the dislocation–grain boundary interactions. Adv. Eng. Mater. 13(4), 281–287 (2011). https://doi.org/10.1002/adem.201000229

    Article  CAS  Google Scholar 

  55. Azushima, A., Kopp, R., Korhonen, A., Yang, D.Y., Micari, F., Lahoti, G.D., Groche, P., Yanagimoto, J., Tsuji, N., Rosochowski, A., Yanagida, A.: Severe plastic deformation (SPD) processes for metals. CIRP Ann. 57(2), 716–735 (2008). https://doi.org/10.1016/j.cirp.2008.09.005

    Article  Google Scholar 

  56. El Aal, M.I.A., El Mahallawy, N., Shehata, F.A., El Hameed, M.A., Yoon, E.Y., Kim, H.S.: Wear properties of ECAP-processed ultrafine grained Al–Cu alloys. Mater. Sci. Eng. A. 527(16–17), 3726–3732 (2010). https://doi.org/10.1016/j.msea.2010.03.057

    Article  CAS  Google Scholar 

  57. Amouyal, Y., Divinski, S.V., Estrin, Y., Rabkin, E.: Short-circuit diffusion in an ultrafine-grained copper–zirconium alloy produced by equal channel angular pressing. Acta Mater. 55(17), 5968–5979 (2007). https://doi.org/10.1016/j.actamat.2007.07.026

    Article  CAS  Google Scholar 

  58. Liu, Q., Hansen, N.: Geometrically necessary boundaries and incidental dislocation boundaries formed during cold deformation. United States: N. p., 1995. Web. https://doi.org/10.1016/0956-716X(94)00019-E

  59. Zhang, X., Wang, H., Scattergood, R.O., Narayan, J., Koch, C.C., Sergueeva, A.V., Mukherjee, A.K.: Studies of deformation mechanisms in ultra-fine-grained and nanostructured Zn. Acta Mater. 50(19), 4823–4830 (2002). https://doi.org/10.1016/S1359-6454(02)00349-X

    Article  CAS  Google Scholar 

  60. Mishin, O.V., Gertsman, V.Y., Valiev, R.Z., Gottstein, G.: Grain boundary distribution and texture in ultrafine-grained copper produced by severe plastic deformation. Scr. Mater. 35(7), 873–878 (1996). https://doi.org/10.1016/1359-6462(96)00222-9

    Article  CAS  Google Scholar 

  61. Calcagnotto, M., Adachi, Y., Ponge, D., Raabe, D.: Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater. 59(2), 658–670 (2011). https://doi.org/10.1016/j.actamat.2010.10.002

    Article  CAS  Google Scholar 

  62. Alizadeh, M., Paydar, M.H., Terada, D., Tsuji, N.: Effect of SiC particles on the microstructure evolution and mechanical properties of aluminum during ARB process. Mater. Sci. Eng. A. 540, 13–23 (2012). https://doi.org/10.1016/j.msea.2011.12.026

    Article  CAS  Google Scholar 

  63. Kou, H., Lu, J., Li, Y.: High-strength and high-ductility nanostructured and amorphous metallic materials. Adv. Mater. 26(31), 5518–5524 (2014). https://doi.org/10.1002/adma.201401595. Special Issue: Materials Science and Engineering Research in Hong Kong

    Article  CAS  Google Scholar 

  64. Nazarov, A.A., Romanov, A.E., Valiev, R.Z.: On the nature of high internal stresses in ultrafine grained materials. Nanostruct. Mater. 4(1), 93–101 (1994). https://doi.org/10.1016/0965-9773(94)90131-7

    Article  CAS  Google Scholar 

  65. Liu, H., Pantleon, W., Mishnaevsky, L.: Non-equilibrium grain boundaries in titanium nanostructured by severe plastic deformation: computational study of sources of material strengthening. Comput. Mater. Sci. 83, 318–330 (2014). https://doi.org/10.1016/j.commatsci.2013.11.009

    Article  CAS  Google Scholar 

  66. Kim, H.-K., Choi, M.-I., Chung, C.-S.: Dong Hyuk shin, fatigue properties of ultrafine grained low carbon steel produced by equal channel angular pressing. Mater. Sci. Eng. A. 340(1–2), 243–250 (2003). https://doi.org/10.1016/S0921-5093(02)00178-8

    Article  Google Scholar 

  67. Miyamoto, H., Harada, K., Harada, K., Mimaki, T., Vinogradov, A., Hashimoto, S.: Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing. Corros. Sci. 50(5), 1215–1220 (2008). https://doi.org/10.1016/j.corsci.2008.01.024

    Article  CAS  Google Scholar 

  68. Kim, H.S., Kim, W.J.: Annealing effects on the corrosion resistance of ultrafine-grained pure titanium. Corros. Sci. 89, 331–337 (2014). https://doi.org/10.1016/j.corsci.2014.08.017

    Article  CAS  Google Scholar 

  69. Farrokh, B., Khan, A.S.: Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al: synthesis, experiment, and constitutive modeling. Int. J. Plast. 25(5), 715–732 (2009). https://doi.org/10.1016/j.ijplas.2008.08.001

    Article  CAS  Google Scholar 

  70. Höppel, H.W., Kautz, M., Xu, C., Murashkin, M., Langdon, T.G., Valiev, R.Z., Mughrabi, H.: An overview: fatigue behaviour of ultrafine-grained metals and alloys. Int. J. Fatigue. 28(9), 1001–1010 (2006). https://doi.org/10.1016/j.ijfatigue.2005.08.014

    Article  CAS  Google Scholar 

  71. Ding, H.-Z., Mughrabi, H., Höppel, H.W.: A low-cycle fatigue life prediction model of ultrafine-grained metals. Fatique Fract. Eng. Mater. Struct. 25(10), 975–984 (2002). https://doi.org/10.1046/j.1460-2695.2002.00564.x

    Article  Google Scholar 

  72. Edalati, K., Ashida, M., Horita, Z., Matsui, T., Kato, H.: Wear resistance and tribological features of pure aluminum and Al–Al2O3 composites consolidated by high-pressure torsion. Wear. 310(1–2), 83–89 (2014). https://doi.org/10.1016/j.wear.2013.12.022

    Article  CAS  Google Scholar 

  73. Gao, N., Wang, C.T., Wood, R.J.K., et al.: Tribological properties of ultrafine-grained materials processed by severe plastic deformation. J. Mater. Sci. 47, 4779–4797 (2012). https://doi.org/10.1007/s10853-011-6231-z

    Article  CAS  Google Scholar 

  74. Padap, A.K., Chaudhari, G.P., Nath, S.K.: Mechanical and dry sliding wear behavior of ultrafine-grained AISI 1024 steel processed using multiaxial forging. J. Mater. Sci. 45, 4837–4845 (2010). https://doi.org/10.1007/s10853-010-4430-7

    Article  CAS  Google Scholar 

  75. Gurao, N.P., Manivasagam, G., Govindaraj, P., et al.: Effect of texture and grain size on bio-corrosion response of ultrafine-grained titanium. Metall. Mater. Trans. A. 44, 5602–5610 (2013). https://doi.org/10.1007/s11661-013-1910-9

    Article  CAS  Google Scholar 

  76. Asabe, T., Rifai, M., Yuasa, M., Miyamoto, H.: Effect of grain size on the stress corrosion cracking of ultrafine grained Cu-10 wt% Zn alloy in ammonia. Int. J. Corros. 2017, 2893276 (2017). https://doi.org/10.1155/2017/2893276

    Article  CAS  Google Scholar 

  77. Huang, C.X., Hu, W.P., Wang, Q.Y., Wang, C., Yang, G., Zhu, Y.T.: An ideal ultrafine-grained structure for high strength and high ductility. Mater. Res. Lett. 3(2), 88–94 (2014). https://doi.org/10.1080/21663831.2014.968680

    Article  CAS  Google Scholar 

  78. Guo, Y.Z., Li, Y.L., Pan, Z., Zhou, F.H., Wei, Q.: A numerical study of microstructure effect on adiabatic shear instability: application to nanostructured/ultrafine grained materials. Mech. Mater. 42(11), 1020–1029 (2010). https://doi.org/10.1016/j.mechmat.2010.09.002

    Article  Google Scholar 

  79. Muley, S.V., Vidvans, A.N., Chaudhari, G.P., Udainiya, S.: An assessment of ultra fine grained 316L stainless steel for implant applications. Acta Mater. 30, 408–419 (2016). https://doi.org/10.1016/j.actbio.2015.10.043

    Article  CAS  Google Scholar 

  80. Li, B., Joshi, S., Azevedo, K., Ma, E., Ramesh, K.T., Figueiredo, R.B., Langdon, T.G.: Dynamic testing at high strain rates of an ultrafine-grained magnesium alloy processed by ECAP. Mater. Sci. Eng. A. 517(1–2), 24–29 (2009). https://doi.org/10.1016/j.msea.2009.03.032

    Article  CAS  Google Scholar 

  81. Suzuki, Y., Yang, M., Murakawa, M.: Optimum clearance in the microblanking of thin foil of austenitic stainless steel JIS SUS304 studied from shear cut surface and punch load. Materials. 13, 678 (2020)

    Article  CAS  Google Scholar 

  82. Wang, Z., Jia, J., Wang, B., Wang, Y.: Two-step spark plasma sintering process of ultrafine grained WC-12Co-0.2VC cemented carbide. Materials (Basel). 12(15), 2443 (2019). https://doi.org/10.3390/ma12152443

    Article  CAS  Google Scholar 

  83. See: https://www.comtesfht.cz/media/document/sbornik_full_texty_final.pdf. 20.05.2020

  84. Fernandesa, D.J., Eliasa, C.N., Valiev, R.Z.: Properties and performance of ultrafine grained titanium for biomedical applications. Mater. Res. 18(6), 1163–1175 (2015). https://doi.org/10.1590/1516-1439.005615

    Article  CAS  Google Scholar 

  85. Semenova, I.P., Modina, J., Polyakov, A.V., Klevtsov, G.V., Klevtsova, N.A., Pigaleva, I.N., Valiev, R.Z.: Charpy absorbed energy of ultrafine-grained Ti-6Al-4V alloy at cryogenic and elevated temperatures. Mater. Sci. Eng. A. 743, 581–589 (2019). https://doi.org/10.1016/j.msea.2018.10.076

    Article  CAS  Google Scholar 

  86. Bagherpour, E., Pardis, N., Reihanian, M., Ebrahimi, R.: An overview on severe plastic deformation: research status, techniques classification, microstructure evolution, and applications. Int. J. Adv. Manuf. Technol. 100, 1647–1694 (2019). https://doi.org/10.1007/s00170-018-2652-z

    Article  Google Scholar 

  87. Valiev, R.Z., Estrin, Y., Horita, Z., et al.: Producing bulk ultrafine-grained materials by severe plastic deformation: ten years later. JOM. 68, 1216–1226 (2016). https://doi.org/10.1007/s11837-016-1820-6

    Article  CAS  Google Scholar 

  88. Sanusi, O., Makinde, D., Oliver, J.: Equal channel angular pressing technique for the formation of ultra-fine grained structures. S. Afr. J. Sci. 108(9–10), 1–7 (2012) [cited 2020-08-31]. Available from: <http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-23532012000500019&lng=en&nrm=iso>. ISSN 1996-7489

    Google Scholar 

  89. Xiao, G., Xia, Q., Cheng, X., et al.: New forming method of manufacturing cylindrical parts with nano/ultrafine grained structures by power spinning based on small plastic strains. Sci. China Technol. Sci. 59, 1656–1665 (2016). https://doi.org/10.1007/s11431-016-0206-6

    Article  CAS  Google Scholar 

  90. Qiao, X.G., Gao, N., Moktadir, Z., Kraft, M., Starink, M.J.: Fabrication of MEMS components using ultrafine-grained aluminium alloys. J. Micromech. Microeng. 20(4). https://doi.org/10.1088/0960-1317/20/4/045029

  91. Zhao, G., Xu, S., Luan, Y., Guan, Y., Lun, N., Ren, X.: Grain refinement mechanism analysis and experimental investigation of equal channel angular pressing for producing pure aluminum ultra-fine grained materials. Mater. Sci. Eng. A. 437(2), 281–292 (2006). https://doi.org/10.1016/j.msea.2006.07.138

    Article  CAS  Google Scholar 

  92. Lin, T., Yang, Q., Tan, C., et al.: Processing and ballistic performance of lightweight armors based on ultra-fine-grain aluminum composites. J. Mater. Sci. 43, 7344–7348 (2008). https://doi.org/10.1007/s10853-008-2977-3

    Article  CAS  Google Scholar 

  93. Piers Newbery, A., Nutt, S.R., Lavernia, E.J.: Multi-scale Al 5083 for military vehicles with improved performance. JOM. 58, 56–61 (2006). https://doi.org/10.1007/s11837-006-0216-4

    Article  Google Scholar 

  94. Erb, U., Aust, K.T., Palumbo, G.: 6 - electrodeposited nanocrystalline metals, alloys, and composites. In: Koch, C.C. (ed.) Nanostructured materials, 2nd edn, pp. 235–292. William Andrew Publishing, Norwich, NY (2007). https://doi.org/10.1016/B978-081551534-0.50008-7

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Behera, A. (2022). Ultrafine-Grained Materials. In: Advanced Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-80359-9_17

Download citation

Publish with us

Policies and ethics