Abstract
The presence of heavy metals in aqueous systems is a topic of continuous concern in the scientific community due to their high toxicity, coupled to their increasing applications and irresponsible waste management, which demand for a tight control and evaluation of their impact on natural systems. In this respect, analytical chemistry plays a fundamental role for the development and application of more efficient methods and techniques for their quantification. Nevertheless, challenges related to low concentrations, species distributions and complex matrices can only be overcome with novel, effective and cost-efficient methods that lead to reliable results.
This chapter presents an overview of the most used analytical methods for the quantification of trace heavy metals in aqueous samples. It includes an in-depth discussion of atomic spectroscopic and spectrometric techniques, electrochemical analytical tools, ranging from potentiostatic to chemiluminescent methods, and chromatographic and bio-based techniques for heavy metal determination. Additionally, a section dedicated to the growing field of sample preparation is also presented, paying special attention to novel liquid-liquid and solid phase microextraction techniques based on the use of modern solvents and nanomaterials. Throughout the chapter, special emphasis is made on recent developments aimed to the improvement of the sensitivity and limits of detection and on the importance of speciation analysis, a fundamental yet still undervalued aspect of the integral evaluation of the presence and impact of heavy metals in waters.
Keywords
- Heavy metal
- Analytical chemistry
- Preconcentration
- Nanotechnology
- Water
- Speciation analysis
- Sample preparation
- Green chemistry
- Atomic spectroscopy
- Electrochemistry
This is a preview of subscription content, access via your institution.
Buying options



References
Abdolmohammad-Zadeh H, Talleb Z (2014) Speciation of As(III)/As(V) in water samples by a magnetic solid phase extraction based on Fe3O4/Mg–Al layered double hydroxide nano-hybrid followed by chemiluminescence detection. Talanta 128:147–155. https://doi.org/10.1016/j.talanta.2014.04.070
Achterberg EP, Browning TJ, Gledhill M, Schlosser C (2019) Transition metals and heavy metal speciation☆. In: Cochran JK, Bokuniewicz HJ, Yager PL (eds) Encyclopedia of ocean sciences, 3rd edn. Academic, Oxford, pp 218–227. https://doi.org/10.1016/B978-0-12-409548-9.11394-6
Adam IS, Anthemidis AN (2009) Flow injection wetting-film extraction system for flame atomic absorption spectrometric determination of cadmium in environmental waters. Talanta 77(3):1160–1164. https://doi.org/10.1016/j.talanta.2008.08.015
Almagro B, Gañán-Calvo AM, Hidalgo M, Canals A (2006) Flow focusing pneumatic nebulizer in comparison with several micronebulizers in inductively coupled plasma atomic emission spectrometry. J Anal At Spectrom 21(8):770–777. https://doi.org/10.1039/B518282D
Ameer SS, Engström K, Hossain MB, Concha G, Vahter M, Broberg K (2017) Arsenic exposure from drinking water is associated with decreased gene expression and increased DNA methylation in peripheral blood. Toxicol Appl Pharmacol 321:57–66. https://doi.org/10.1016/j.taap.2017.02.019
Ammann AA (2007) Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool. J Mass Spectrom 42(4):419–427. https://doi.org/10.1002/jms.1206
Anthemidis AN, Ioannou K-IG (2009) Recent developments in homogeneous and dispersive liquid–liquid extraction for inorganic elements determination. A review. Talanta 80(2):413–421. https://doi.org/10.1016/j.talanta.2009.09.005
Aragay G, Merkoçi A (2012) Nanomaterials application in electrochemical detection of heavy metals. Electrochim Acta 84:49–61. https://doi.org/10.1016/j.electacta.2012.04.044
Asiabi H, Yamini Y, Shamsayei M, Tahmasebi E (2017) Highly selective and efficient removal and extraction of heavy metals by layered double hydroxides intercalated with the diphenylamine-4-sulfonate: a comparative study. Chem Eng J 323:212–223. https://doi.org/10.1016/j.cej.2017.04.096
Awual MR et al (2018) Efficient detection and adsorption of cadmium (II) ions using innovative nano-composite materials. Chem Eng J 343:118–127. https://doi.org/10.1016/j.cej.2018.02.116
Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev 4(1):37–59. https://doi.org/10.1002/cben.201600010
Baghdadi M, Shemirani F (2008) Cold-induced aggregation microextraction: a novel sample preparation technique based on ionic liquids. Anal Chim Acta 613(1):56–63. https://doi.org/10.1016/j.aca.2008.02.057
Baghdadi M, Shemirani F (2009) In situ solvent formation microextraction based on ionic liquids: a novel sample preparation technique for determination of inorganic species in saline solutions. Anal Chim Acta 634(2):186–191. https://doi.org/10.1016/j.aca.2008.12.017
Bakirdere S (2013) Speciation studies in soil, sediment and environmental samples. CRC Press, Boca Raton. https://doi.org/10.1201/b15501
Bansod B, Kumar T, Thakur R, Rana S, Singh I (2017) A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens Bioelectron 94:443–455. https://doi.org/10.1016/j.bios.2017.03.031
Basheer C, Alnedhary AA, Rao BSM, Valliyaveettil S, Lee HK (2006) Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectrometry. Anal Chem 78(8):2853–2858. https://doi.org/10.1021/ac060240i
Behbahani M, Bide Y, Bagheri S, Salarian M, Omidi F, Nabid MR (2016) A pH responsive nanogel composed of magnetite, silica and poly(4-vinylpyridine) for extraction of Cd(II), Cu(II), Ni(II) and Pb(II). Microchim Acta 183(1):111–121. https://doi.org/10.1007/s00604-015-1603-8
Beiraghi A, Shokri M, Seidi S, Godajdar BM (2015) Magnetomotive room temperature dicationic ionic liquid: a new concept toward centrifuge-less dispersive liquid–liquid microextraction. J Chromatogr A 1376:1–8. https://doi.org/10.1016/j.chroma.2014.12.004
Bernalte E, Sánchez CM, Gil EP (2011) Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes. Anal Chim Acta 689(1):60–64. https://doi.org/10.1016/j.aca.2011.01.042
Bertoncello P, Ugo P (2017) Recent advances in electrochemiluminescence with quantum dots and arrays of nanoelectrodes. ChemElectroChem 4(7):1663–1676. https://doi.org/10.1002/celc.201700201
Biata NR, Dimpe KM, Ramontja J, Mketo N, Nomngongo PN (2018) Determination of thallium in water samples using inductively coupled plasma optical emission spectrometry (ICP-OES) after ultrasonic assisted-dispersive solid phase microextraction. Microchem J 137:214–222. https://doi.org/10.1016/j.microc.2017.10.020
Blake DA, Blake RC II, Khosraviani M, Pavlov AR (1998) Immunoassays for metal ions. Anal Chim Acta 376(1):13–19. https://doi.org/10.1016/S0003-2670(98)00437-1
Borah SBD, Bora T, Baruah S, Dutta J (2015) Heavy metal ion sensing in water using surface plasmon resonance of metallic nanostructures. Groundw Sustain Dev 1(1):1–11. https://doi.org/10.1016/j.gsd.2015.12.004
Bordin DCM, Alves MNR, de Campos EG, De Martinis BS (2016) Disposable pipette tips extraction: fundamentals, applications and state of the art. J Sep Sci 39(6):1168–1172. https://doi.org/10.1002/jssc.201500932
Borgese L et al (2014) First Total reflection X-ray fluorescence round-robin test of water samples: preliminary results. Spectrochim Acta B At Spectrosc 101:6–14. https://doi.org/10.1016/j.sab.2014.06.024
Bouchard MF, Surette C, Cormier P, Foucher D (2018) Low level exposure to manganese from drinking water and cognition in school-age children. Neurotoxicology 64:110–117. https://doi.org/10.1016/j.neuro.2017.07.024
Branger C, Meouche W, Margaillan A (2013) Recent advances on ion-imprinted polymers. React Funct Polym 73(6):859–875. https://doi.org/10.1016/j.reactfunctpolym.2013.03.021
Broekaert JAC (2006) Analytical atomic spectrometry with flames and plasmas. Wiley, Hoboken. https://doi.org/10.1002/3527606653
Büyükpınar Ç, Maltepe E, Chormey DS, San N, Bakırdere S (2017) Determination of nickel in water and soil samples at trace levels using photochemical vapor generation-batch type ultrasonication assisted gas liquid separator-atomic absorption spectrometry. Microchem J 132:167–171. https://doi.org/10.1016/j.microc.2017.01.024
Calderilla C, Maya F, Leal LO, Cerdà V (2018) Recent advances in flow-based automated solid-phase extraction. TrAC Trends Anal Chem 108:370–380. https://doi.org/10.1016/j.trac.2018.09.011
Camel V (2003) Solid phase extraction of trace elements. Spectrochim Acta B At Spectrosc 58(7):1177–1233. https://doi.org/10.1016/S0584-8547(03)00072-7
Capriotti AL, Cavaliere C, La Barbera G, Montone CM, Piovesana S, Laganà A (2019) Recent applications of magnetic solid-phase extraction for sample preparation. Chromatographia 82(8):1251–1274. https://doi.org/10.1007/s10337-019-03721-0
Catalani S, Fostinelli J, Gilberti ME, Apostoli P (2015) Application of a metal free high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC–ICP-MS) for the determination of chromium species in drinking and tap water. Int J Mass Spectrom 387:31–37. https://doi.org/10.1016/j.ijms.2015.06.015
Chen X, Wang W, Li B (2019) Novel nanomaterials for the fabrication of Electrochemiluminescent sensors. In: Chen XWX (ed) Novel nanomaterials for biomedical, environmental and energy applications. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-814497-8.00006-0
Cheng J, Li Q, Zhao M, Wang Z (2019) Ultratrace Pb determination in seawater by solution-cathode glow discharge-atomic emission spectrometry coupled with hydride generation. Anal Chim Acta 1077:107–115. https://doi.org/10.1016/j.aca.2019.06.003
Chisvert A, Cárdenas S, Lucena R (2019) Dispersive micro-solid phase extraction. TrAC Trends Anal Chem 112:226–233. https://doi.org/10.1016/j.trac.2018.12.005
Choi S-M, Kim D-M, Jung O-S, Shim Y-B (2015) A disposable chronocoulometric sensor for heavy metal ions using a diaminoterthiophene-modified electrode doped with graphene oxide. Anal Chim Acta 892:77–84. https://doi.org/10.1016/j.aca.2015.08.037
Choleva TG, Tsogas GZ, Giokas DL (2019) Determination of silver nanoparticles by atomic absorption spectrometry after dispersive suspended microextraction followed by oxidative dissolution back-extraction. Talanta 196:255–261. https://doi.org/10.1016/j.talanta.2018.12.053
Chow JC, Watson JG (2017) Enhanced ion chromatographic speciation of water-soluble PM2.5 to improve aerosol source apportionment. Aerosol Sci Eng 1(1):7–24. https://doi.org/10.1007/s41810-017-0002-4
Clark KD, Nacham O, Purslow JA, Pierson SA, Anderson JL (2016) Magnetic ionic liquids in analytical chemistry: a review. Anal Chim Acta 934:9–21. https://doi.org/10.1016/j.aca.2016.06.011
Clough R, Harrington CF, Hill SJ, Madrid Y, Tyson JF (2018) Atomic spectrometry update: review of advances in elemental speciation. J Anal At Spectrom 33(7):1103–1149. https://doi.org/10.1039/C8JA90025F
Contreras V, Valencia R, Peralta J, Sobral H, Meneses-Nava M, Martinez H (2018) Chemical elemental analysis of single acoustic-levitated water droplets by laser-induced breakdown spectroscopy. Opt Lett 43(10):2260–2263. https://doi.org/10.1364/OL.43.002260
Cornelis R, Nordberg M (2007) CHAPTER 2 - general chemistry, sampling, analytical methods, and speciation. In: Nordberg GF, Fowler BA, Nordberg M, Friberg LT (eds) Handbook on the toxicology of metals, 3rd edn. Academic, Burlington, pp 11–38. https://doi.org/10.1016/B978-012369413-3/50057-4
Cremers DA, Multari RA, Knight AK (2006) Laser-induced breakdown spectroscopy. In: Encyclopedia of analytical chemistry: applications, theory and instrumentation, pp 1–28. https://doi.org/10.1002/9780470027318.a5110t.pub3
Crompton TR (2015) Determination of metals in natural waters, sediments, and soils, 1st edn. Elsevier Science, Amsterdam. https://doi.org/10.1016/B978-0-12-802654-0.00001-5
Cui C, He M, Chen B, Hu B (2014) Chitosan modified magnetic nanoparticles based solid phase extraction combined with ICP-OES for the speciation of Cr(iii) and Cr(vi). Anal Methods 6(21):8577–8583. https://doi.org/10.1039/C4AY01609B
Dalipi R, Marguí E, Borgese L, Depero LE (2017) Multi-element analysis of vegetal foodstuff by means of low power total reflection X-ray fluorescence (TXRF) spectrometry. Food Chem 218:348–355. https://doi.org/10.1016/j.foodchem.2016.09.022
de Andrade RM, de Gois JS, Toaldo IM, Batista DB, Luna AS, Borges DL (2017) Direct determination of trace elements in meat samples via high-resolution graphite furnace atomic absorption spectrometry. Food Anal Methods 10(5):1209–1215. https://doi.org/10.1007/s12161-016-0659-3
De Giacomo A, Dell’Aglio M, Gaudiuso R, Koral C, Valenza G (2016a) Perspective on the use of nanoparticles to improve LIBS analytical performance: nanoparticle enhanced laser induced breakdown spectroscopy (NELIBS). J Anal At Spectrom 31(8):1566–1573. https://doi.org/10.1039/C6JA00189K
De Giacomo A, Koral C, Valenza G, Gaudiuso R, Dell’Aglio M (2016b) Nanoparticle enhanced laser-induced breakdown spectroscopy for microdrop analysis at subppm level. Anal Chem 88(10):5251–5257. https://doi.org/10.1021/acs.analchem.6b00324
Dion L-A, Saint-Amour D, Sauvé S, Barbeau B, Mergler D, Bouchard MF (2018) Changes in water manganese levels and longitudinal assessment of intellectual function in children exposed through drinking water. Neurotoxicology 64:118–125. https://doi.org/10.1016/j.neuro.2017.08.015
Donovan AR, Adams CD, Ma Y, Stephan C, Eichholz T, Shi H (2016) Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment. Chemosphere 144:148–153. https://doi.org/10.1016/j.chemosphere.2015.07.081
Dufus JH (2002) “Heavy metals” a meaningless term? Pure Appl Chem 74(5):14. https://doi.org/10.1351/pac20027405079
Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL (2017) A practical beginner’s guide to cyclic voltammetry. J Chem Educ 95(2):197–206. https://doi.org/10.1021/acs.jchemed.7b00361
EU (1998) European Union. EU’s drinking water standards, Council Directive 98/83/EC on the quality of water intended for human consumption
Feist B (2016) Selective dispersive micro solid-phase extraction using oxidized multiwalled carbon nanotubes modified with 1,10-phenanthroline for preconcentration of lead ions. Food Chem 209:37–42. https://doi.org/10.1016/j.foodchem.2016.04.015
Feldmann J, Salaün P, Lombi E (2009) Critical review perspective: elemental speciation analysis methods in environmental chemistry–moving towards methodological integration. Environ Chem 6(4):275–289. https://doi.org/10.1071/EN09018
Felix FS, Angnes L (2010) Fast and accurate analysis of drugs using amperometry associated with flow injection analysis. J Pharm Sci 99(12):4784–4804. https://doi.org/10.1002/jps.22192
Fernández-Sánchez ML, Fernández-Arguelles MT, Costa-Fernández JM (2019) Atomic emission spectometry | flame photometry☆. In: Worsfold P, Poole C, Townshend A, Miró M (eds) Encyclopedia of analytical science, 3rd edn. Academic, Oxford, pp 160–168
Ferreira SL et al (2018) Atomic absorption spectrometry – a multi element technique. TrAC Trends Anal Chem 100:1–6. https://doi.org/10.1016/j.trac.2017.12.012
Filik H, Tütem E, Apak R (2004) Use of the molybdenum–thiocyanate–rhodamine 6G ternary complex for spectrophotometric molybdenum determination without extraction. Anal Chim Acta 505(1):77–82. https://doi.org/10.1016/S0003-2670(03)00624-X
Fiorani A et al (2019) Advanced carbon nanomaterials for electrochemiluminescent biosensor applications. Curr Opin Electrochem. https://doi.org/10.1016/j.coelec.2019.04.018
Fréchette-Viens L, Hadioui M, Wilkinson KJ (2019) Quantification of ZnO nanoparticles and other Zn containing colloids in natural waters using a high sensitivity single particle ICP-MS. Talanta. https://doi.org/10.1016/j.talanta.2019.03.041
Frost MS, Dempsey MJ, Whitehead DE (2015) Highly sensitive SERS detection of Pb2+ ions in aqueous media using citrate functionalised gold nanoparticles. Sensors Actuators B Chem 221:1003–1008. https://doi.org/10.1016/j.snb.2015.07.001
Galbacs G (2015) A critical review of recent progress in analytical laser-induced breakdown spectroscopy. Anal Bioanal Chem 407(25):7537–7562. https://doi.org/10.1007/s00216-015-8855-3
Gerke TL, Little BJ, Maynard JB (2016) Manganese deposition in drinking water distribution systems. Sci Total Environ 541:184–193. https://doi.org/10.1016/j.scitotenv.2015.09.054
Ghaedi M, Shokrollahi A, Niknam K, Niknam E, Najibi A, Soylak M (2009) Cloud point extraction and flame atomic absorption spectrometric determination of cadmium (II), lead (II), palladium (II) and silver (I) in environmental samples. J Hazard Mater 168(2–3):1022–1027. https://doi.org/10.1016/j.jhazmat.2009.02.130
Giakisikli G, Anthemidis AN (2013) Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review. Anal Chim Acta 789:1–16. https://doi.org/10.1016/j.aca.2013.04.021
Grijalba AC, Escudero LB, Wuilloud RG (2015) Ionic liquid-assisted multiwalled carbon nanotube-dispersive micro-solid phase extraction for sensitive determination of inorganic As species in garlic samples by electrothermal atomic absorption spectrometry. Spectrochim Acta B At Spectrosc 110:118–123. https://doi.org/10.1016/j.sab.2015.06.005
Grochowski C et al (2019) Analysis of trace elements in human brain: its aim, methods and concentration levels. Front Chem 7:115. https://doi.org/10.3389/fchem.2019.00115
Guerrini L et al (2014) Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: identification and quantification of inorganic- and methyl-mercury in water. Nanoscale (14):8368–8375. https://doi.org/10.1039/c4nr01464b
Gumpu MB, Veerapandian M, Krishnan UM, Rayappan JBB (2018) Amperometric determination of As (III) and Cd (II) using a platinum electrode modified with acetylcholinesterase, ruthenium (II)-tris (bipyridine) and graphene oxide. Microchim Acta 185(6):297. https://doi.org/10.1007/s00604-018-2822-6
Gürkan R, Tamay A, Ulusoy Hİ (2017) Speciative determination of total V and dissolved inorganic vanadium species in environmental waters by catalytic–kinetic spectrophotometric method. Arab J Chem 10:S13–S22. https://doi.org/10.1016/j.arabjc.2012.06.006
Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244. https://doi.org/10.1002/anie.200602866
Hanna SN, Jones BT (2011) A review of tungsten coil electrothermal vaporization as a sample introduction technique in atomic spectrometry. Appl Spectrosc Rev 46(8):624–635. https://doi.org/10.1080/05704928.2011.582659
Hasanjani HRA, Zarei K (2019) An electrochemical sensor for attomolar determination of mercury (II) using DNA/poly-L-methionine-gold nanoparticles/pencil graphite electrode. Biosens Bioelectron 128:1–8. https://doi.org/10.1016/j.bios.2018.12.039
Haynes CL, McFarland AD, Duyne RPV (2005) Surface-enhanced Raman spectroscopy. Anal Chem 77(17):338 A–346 A. https://doi.org/10.1021/ac053456d
He Q, Zhu Z, Hu S (2014) Plasma-induced vapor generation technique for analytical atomic spectrometry. Rev Anal Chem 33(2):111–121. https://doi.org/10.1515/revac-2014-0012
He Y et al (2018) Selenium contamination, consequences and remediation techniques in water and soils: a review. Environ Res 164:288–301. https://doi.org/10.1016/j.envres.2018.02.037
Hébrant M (2009) Metal ion extraction in microheterogeneous systems. Coord Chem Rev 253(17):2186–2192. https://doi.org/10.1016/j.ccr.2009.03.006
Hemmati M, Rajabi M, Asghari A (2018) Magnetic nanoparticle based solid-phase extraction of heavy metal ions: a review on recent advances. Microchim Acta 185(3):160. https://doi.org/10.1007/s00604-018-2670-4
Herrero-Latorre C, Barciela-García J, García-Martín S, Peña-Crecente RM, Otárola-Jiménez J (2015) Magnetic solid-phase extraction using carbon nanotubes as sorbents: a review. Anal Chim Acta 892:10–26. https://doi.org/10.1016/j.aca.2015.07.046
Herrero Latorre C, Álvarez Méndez J, Barciela García J, García Martín S, Peña Crecente RM (2012) Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: a review. Anal Chim Acta 749:16–35. https://doi.org/10.1016/j.aca.2012.09.001
Herzog G, Beni V (2013) Stripping voltammetry at micro-interface arrays: a review. Anal Chim Acta 769:10–21. https://doi.org/10.1016/j.aca.2012.12.031
Hill SJ, Fisher AS (2017) Atomic fluorescence, methods and instrumentation. In: Lindon JC, Tranter GE, Koppenaal DW (eds) Encyclopedia of spectroscopy and spectrometry, 3rd edn. Academic, Oxford, pp 65–69. https://doi.org/10.1016/B978-0-12-803224-4.00371-X
Ho T-Y, Chien C-T, Wang B-N, Siriraks A (2010) Determination of trace metals in seawater by an automated flow injection ion chromatograph pretreatment system with ICPMS. Talanta 82(4):1478–1484. https://doi.org/10.1016/j.talanta.2010.07.022
Hsiao I-L et al (2016) Quantification and visualization of cellular uptake of TiO2 and Ag nanoparticles: comparison of different ICP-MS techniques. J Nanobiotechnol 14(1):50. https://doi.org/10.1186/s12951-016-0203-z
Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211-212:317–331. https://doi.org/10.1016/j.jhazmat.2011.10.016
Inzelt G (2010) Chronocoulometry. In: Scholz F (ed) Electroanalytical methods. Springer, Berlin/Heidelberg, pp 147–158. https://doi.org/10.1007/978-3-642-02915-8_7
Izah SC, Chakrabarty N, Srivastav AL (2016) A review on heavy metal concentration in potable water sources in Nigeria: human health effects and mitigating measures. Expos Health 8(2):285–304. https://doi.org/10.1007/s12403-016-0195-9
Jain A, Verma KK (2011) Recent advances in applications of single-drop microextraction: a review. Anal Chim Acta 706(1):37–65. https://doi.org/10.1016/j.aca.2011.08.022
Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72. https://doi.org/10.2478/intox-2014-0009
Jantzi SC, Motto-Ros V, Trichard F, Markushin Y, Melikechi N, De Giacomo A (2016) Sample treatment and preparation for laser-induced breakdown spectroscopy. Spectrochim Acta B At Spectrosc 115:52–63. https://doi.org/10.1016/j.sab.2015.11.002
Jeannot MA, Przyjazny A, Kokosa JM (2010) Single drop microextraction—development, applications and future trends. J Chromatogr A 1217(16):2326–2336. https://doi.org/10.1016/j.chroma.2009.10.08
Jia Y et al (2019) Reduction of interferences using Fe-containing metal–organic frameworks for matrix separation and enhanced photochemical vapor generation of trace bismuth. Anal Chem 91(8):5217–5224. https://doi.org/10.1021/acs.analchem.8b05893
József P, Dávid N, Sándor K, Áron B (2019) A comparison study of analytical performance of chromium speciation methods. Microchem J 149:103958. https://doi.org/10.1016/j.microc.2019.05.058
Kakavandi MG, Behbahani M, Omidi F, Hesam G (2017) Application of ultrasonic assisted-dispersive solid phase extraction based on ion-imprinted polymer nanoparticles for preconcentration and trace determination of lead ions in food and water samples. Food Anal Methods 10(7):2454–2466. https://doi.org/10.1007/s12161-016-0788-8
Kang J, Li R, Wang Y, Chen Y, Yang Y (2017) Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber. J Anal At Spectrom 32(11):2292–2299. https://doi.org/10.1039/C7JA00244K
Kaprara E et al (2015) Occurrence of Cr (VI) in drinking water of Greece and relation to the geological background. J Hazard Mater 281:2–11. https://doi.org/10.1016/j.jhazmat.2014.06.084
Kazemi MS (2016) Solid phase extraction based on thiol functionalized magnetite nanoparticles to determination some heavy metal ions in water samples using atomic absorption spectrometry. Curr Anal Chem 12. https://doi.org/10.2174/1573411012666160504124118
Keller AA, Huang Y, Nelson J (2018) Detection of nanoparticles in edible plant tissues exposed to nano-copper using single-particle ICP-MS. J Nanopart Res 20(4):101. https://doi.org/10.1007/s11051-018-4192-8
Khun N, Liu E (2009) Linear sweep anodic stripping voltammetry of heavy metals from nitrogen doped tetrahedral amorphous carbon thin films. Electrochim Acta 54(10):2890–2898. https://doi.org/10.1016/j.electacta.2008.11.014
Kim D, Goldberg IB, Judy JW (2007) Chronocoulometric determination of nitrate on silver electrode and sodium hydroxide electrolyte. Analyst 132(4):350–357. https://doi.org/10.1039/b614854a
Kocot K, Pytlakowska K, Zawisza B, Sitko R (2016) How to detect metal species preconcentrated by microextraction techniques? TrAC Trends Anal Chem 82:412–424. https://doi.org/10.1016/j.trac.2016.07.003
Krawczyk M, Jeszka-Skowron M (2016) Multiwalled carbon nanotubes as solid sorbent in dispersive micro solid-phase extraction for the sequential determination of cadmium and lead in water samples. Microchem J 126:296–301. https://doi.org/10.1016/j.microc.2015.12.027
Kumar M, Rahman MM, Ramanathan A, Naidu R (2016) Arsenic and other elements in drinking water and dietary components from the middle Gangetic plain of Bihar, India: health risk index. Sci Total Environ 539:125–134. https://doi.org/10.1016/j.scitotenv.2015.08.039
Laborda F, Bolea E, Jimenez-Lamana J (2016) Single particle inductively coupled plasma mass spectrometry for the analysis of inorganic engineered nanoparticles in environmental samples. Trends Environ Anal Chem 9:15–23. https://doi.org/10.1016/j.teac.2016.02.001
Lace A, Ryan D, Bowkett M, Cleary J (2019) Chromium monitoring in water by colorimetry using optimised 1,5-diphenylcarbazide method. Int J Environ Res Public Health 16(10). https://doi.org/10.3390/ijerph16101803
Lasarte-Aragonés G, Lucena R, Cárdenas S, Valcárcel M (2011) Effervescence-assisted dispersive micro-solid phase extraction. J Chromatogr A 1218(51):9128–9134. https://doi.org/10.1016/j.chroma.2011.10.042
Leopold K, Philippe A, Wörle K, Schaumann GE (2016) Analytical strategies to the determination of metal-containing nanoparticles in environmental waters. TrAC Trends Anal Chem 84:107–120. https://doi.org/10.1016/j.trac.2016.03.026
Li N et al (2018a) Recent advances in graphene-based magnetic composites for magnetic solid-phase extraction. TrAC Trends Anal Chem 102:60–74. https://doi.org/10.1016/j.trac.2018.01.009
Li Y et al (2018b) A review of laser-induced breakdown spectroscopy signal enhancement. Appl Spectrosc Rev 53(1):1–35. https://doi.org/10.1080/05704928.2017.1352509
Liu J-M, Liu C-C, Fang G-Z, Wang S (2015) Advanced analytical methods and sample preparation for ion chromatography techniques. RSC Adv 5(72):58713–58726. https://doi.org/10.1039/c5ra10348g
López Marzo AM, Pons J, Blake DA, Merkoçi A (2013) All-integrated and highly sensitive paper based device with sample treatment platform for Cd2+ immunodetection in drinking/tap waters. Anal Chem 85(7):3532–3538. https://doi.org/10.1021/ac3034536
Lovrić M (2010) Square-wave voltammetry electroanalytical methods. Springer, pp 121–145
Lu Y, Liang X, Niyungeko C, Zhou J, Xu J, Tian G (2018) A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 178:324–338. https://doi.org/10.1016/j.talanta.2017.08.033
Mahmoud ME, Amira MF, Zaghloul AA, Ibrahim GAA (2016) Microwave-enforced sorption of heavy metals from aqueous solutions on the surface of magnetic iron oxide-functionalized-3-aminopropyltriethoxysilane. Chem Eng J 293:200–206. https://doi.org/10.1016/j.cej.2016.02.056
Malik LA, Bashir A, Qureashi A, Pandith AH (2019) Detection and removal of heavy metal ions: a review. Environ Chem Lett:1–27. https://doi.org/10.1007/s10311-019-00891-z
Maratta A, Vázquez S, López A, Augusto M, Pacheco PH (2016) Lead preconcentration by solid phase extraction using oxidized carbon xerogel and spectrophotometric determination with dithizone. Microchem J 128:166–171. https://doi.org/10.1016/j.microc.2016.04.017
Marciniak A (2010) Influence of cation and anion structure of the ionic liquid on extraction processes based on activity coefficients at infinite dilution. A review. Fluid Phase Equilibria 294(1–2):213–233. https://doi.org/10.1016/j.fluid.2009.12.025
Martinis EM, Berton P, Monasterio RP, Wuilloud RG (2010) Emerging ionic liquid-based techniques for total-metal and metal-speciation analysis. TrAC Trends Anal Chem 29(10):1184–1201. https://doi.org/10.1016/j.trac.2010.07.013
Martinis EM, Berton P, Wuilloud RG (2014) Ionic liquid-based microextraction techniques for trace-element analysis. TrAC Trends Anal Chem 60:54–70. https://doi.org/10.1016/j.trac.2014.04.012
Martinis EM, Grijalba AC, Pérez MB, Llaver M, Wuilloud RG (2017) Synergistic analytical preconcentration with ionic liquid–nanomaterial hybrids. TrAC Trends Anal Chem 97:333–344. https://doi.org/10.1016/j.trac.2017.10.004
Matar K, Plankova A, Rauko P, Novotny L (2010) Galvanostatic stripping chronopotentiometric study for determination of selenium: pharmacokinetic application in experimental mice. J Pharm Pharm Sci 13(3):391–399. https://doi.org/10.18433/J3ZK5D
Meermann B, Nischwitz V (2018) ICP-MS for the analysis at the nanoscale–a tutorial review. J Anal At Spectrom 33(9):1432–1468. https://doi.org/10.1039/c8ja00037a
Mergola L et al (2016) Novel polymeric sorbents based on imprinted Hg (II)-diphenylcarbazone complexes for mercury removal from drinking water. Polym J 48(1):73. https://doi.org/10.1038/pj.2015.79
Michalke B, Nischwitz V (2013) Chapter 22 – Speciation and element-specific detection. In: Fanali S, Haddad PR, Poole CF, Schoenmakers P, Lloyd D (eds) Liquid chromatography. Elsevier, Amsterdam, pp 633–649. https://doi.org/10.1016/B978-0-12-415806-1.00022-X
Mirceski V, Gulaboski R, Lovric M, Bogeski I, Kappl R, Hoth M (2013) Square-wave voltammetry: a review on the recent progress. Electroanalysis 25(11):2411–2422. https://doi.org/10.1002/elan.201300369
Mohajer S, Chamsaz M, Goharshadi EK, Samiee S (2017) Nanometer-sized cerium oxide particles for solid phase extraction of trace amounts of mercury in real samples prior to cold vapor atomic adsorption spectrometry. Sep Sci Technol 52(10):1652–1659. https://doi.org/10.1080/01496395.2017.1296866
Montaño MD, Olesik JW, Barber AG, Challis K, Ranville JF (2016) Single particle ICP-MS: advances toward routine analysis of nanomaterials. Anal Bioanal Chem 408(19):5053–5074. https://doi.org/10.1007/s00216-016-9676-8
Newman K, Metcalfe C, Martin J, Hintelmann H, Shaw P, Donard A (2016) Improved single particle ICP-MS characterization of silver nanoparticles at environmentally relevant concentrations. J Anal At Spectrom 31(10):2069–2077. https://doi.org/10.1039/c6ja00221h
Ngamchuea K, Eloul S, Tschulik K, Compton RG (2014) Planar diffusion to macro disc electrodes—what electrode size is required for the Cottrell and Randles-Sevcik equations to apply quantitatively? J Solid State Electrochem 18(12):3251–3257. https://doi.org/10.1007/s10008-014-2664-z
Nourbala-Tafti E, Romero V, Lavilla I, Dadfarnia S, Bendicho C (2017) In situ ultrasound-assisted preparation of Fe3O4@MnO2 core-shell nanoparticles integrated with ion co-precipitation for multielemental analysis by total reflection X-ray fluorescence. Spectrochim Acta B At Spectrosc 131:40–47. https://doi.org/10.1016/j.sab.2017.03.005
Okoye COB, Chukwuneke A, Ekere N, Ihedioha J (2013) Simultaneous ultraviolet-visible (UV–VIS) spectrophotometric quantitative determination of Pb, Hg, Cd, As and Ni ions in aqueous solutions using cyanidin as a chromogenic reagent. Int J Phys Sci 8(3):98–102. https://doi.org/10.5897/IJPS12.670
Palacio M, Bhushan B (2010) A review of ionic liquids for green molecular lubrication in nanotechnology. Tribol Lett 40(2):247–268. https://doi.org/10.1007/s11249-010-9671-8
Panhwar AH, Kazi TG, Afridi HI, Shah F, Arain MB, Arain SA (2016) Evaluated the adverse effects of cadmium and aluminum via drinking water to kidney disease patients: application of a novel solid phase microextraction method. Environ Toxicol Pharmacol 43:242–247. https://doi.org/10.1016/j.etap.2016.03.017
Paul D (2017) Research on heavy metal pollution of river Ganga: a review. Annal Agrarian Sci 15(2):278–286. https://doi.org/10.1016/j.aasci.2017.04.001
Pedrero M, Campuzano S, Pingarrón JM (2017) Quantum dots as components of electrochemical sensing platforms for the detection of environmental and food pollutants: a review. J AOAC Int 100(4):950–961. https://doi.org/10.5740/jaoacint.17-0169
Pena-Pereira F, Namieśnik J (2014) Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes. ChemSusChem 7(7):1784–1800. https://doi.org/10.1002/cssc.201301192
Płotka-Wasylka J, Owczarek K, Namieśnik J (2016a) Modern solutions in the field of microextraction using liquid as a medium of extraction. TrAC Trends Anal Chem 85:46–64. https://doi.org/10.1016/j.trac.2016.08.010
Płotka-Wasylka J, Szczepańska N, de la Guardia M, Namieśnik J (2016b) Modern trends in solid phase extraction: new sorbent media. TrAC Trends Anal Chem 77:23–43. https://doi.org/10.1016/j.trac.2015.10.010
Puanngam M, Dasgupta PK, Unob F (2012) Automated on-line preconcentration of trace aqueous mercury with gold trap focusing for cold vapor atomic absorption spectrometry. Talanta 99:1040–1045. https://doi.org/10.1016/j.talanta.2012.05.055
Pujol L, Evrard D, Groenen-Serrano K, Freyssinier M, Ruffien-Cizsak A, Gros P (2014) Electrochemical sensors and devices for heavy metals assay in water: the French groups’ contribution. Front Chem 2:19. https://doi.org/10.3389/fchem.2014.00019
Pyrzynska K (2013) Use of nanomaterials in sample preparation. TrAC Trends Anal Chem 43:100–108. https://doi.org/10.1016/j.trac.2012.09.022
Pytlakowska K, Kozik V, Dabioch M (2013) Complex-forming organic ligands in cloud-point extraction of metal ions: a review. Talanta 110:202–228. https://doi.org/10.1016/j.talanta.2013.02.037
Rajabi HR, Razmpour S (2016) Synthesis, characterization and application of ion imprinted polymeric nanobeads for highly selective preconcentration and spectrophotometric determination of Ni2+ ion in water samples. Spectrochim Acta A Mol Biomol Spectrosc 153:45–52. https://doi.org/10.1016/j.saa.2015.08.010
Rajabi M, Ghoochani Moghadam A, Barfi B, Asghari A (2016) Air-assisted dispersive micro-solid phase extraction of polycyclic aromatic hydrocarbons using a magnetic graphitic carbon nitride nanocomposite. Microchim Acta 183(4):1449–1458. https://doi.org/10.1007/s00604-016-1780-0
Ramos L (2012) Chapter 1 – Basics and advances in sampling and sample preparation. In: Picó Y (ed) Chemical analysis of food: techniques and applications. Academic, Boston, pp 3–24. https://doi.org/10.1016/B978-0-12-384862-8.00001-7
Rezaee M, Yamini Y, Faraji M (2010) Evolution of dispersive liquid–liquid microextraction method. J Chromatogr A 1217(16):2342–2357. https://doi.org/10.1016/j.chroma.2009.11.088
Rhind SM (2009) Anthropogenic pollutants: a threat to ecosystem sustainability? Philos Trans R Soc Lond Ser B Biol Sci 364(1534):3391–3401. https://doi.org/10.1098/rstb.2009.0122
Ribeiro LF, Masini JC (2018) Complexing porous polymer monoliths for online solid-phase extraction of metals in sequential injection analysis with electrochemical detection. Talanta 185:387–395. https://doi.org/10.1016/j.talanta.2018.03.099
Richter MM (2004) Electrochemiluminescence (ecl). Chem Rev 104(6):3003–3036. https://doi.org/10.1021/cr020373d
Rocío-Bautista P, González-Hernández P, Pino V, Pasán J, Afonso AM (2017) Metal-organic frameworks as novel sorbents in dispersive-based microextraction approaches. TrAC Trends Anal Chem 90:114–134. https://doi.org/10.1016/j.trac.2017.03.002
Rohanifar A, Rodriguez LB, Devasurendra AM, Alipourasiabi N, Anderson JL, Kirchhoff JR (2018) Solid-phase microextraction of heavy metals in natural water with a polypyrrole/carbon nanotube/1, 10–phenanthroline composite sorbent material. Talanta 188:570–577. https://doi.org/10.1016/j.talanta.2018.05.100
Rosen AL, Hieftje GM (2004) Inductively coupled plasma mass spectrometry and electrospray mass spectrometry for speciation analysis: applications and instrumentation. Spectrochim Acta B At Spectrosc 59(2):135–146. https://doi.org/10.1016/j.sab.2003.09.004
Rossi E, Errea MI, de Cortalezzi MMF, Stripeikis J (2017) Selective determination of Cr (VI) by on-line solid phase extraction FI-SPE-FAAS using an ion exchanger resin as sorbent: an improvement treatment of the analytical signal. Microchem J 130:88–92. https://doi.org/10.1016/j.microc.2016.08.004
Ruiz FJ, Ripoll L, Hidalgo M, Canals A (2019) Dispersive micro solid-phase extraction (DμSPE) with graphene oxide as adsorbent for sensitive elemental analysis of aqueous samples by laser induced breakdown spectroscopy (LIBS). Talanta 191:162–170. https://doi.org/10.1016/j.talanta.2018.08.044
Sadeghi S, Moghaddam AZ (2012) Preconcentration and speciation of trace amounts of chromium in saline samples using temperature-controlled microextraction based on ionic liquid as extraction solvent and determination by electrothermal atomic absorption spectrometry. Talanta 99:758–766. https://doi.org/10.1016/j.talanta.2012.07.018
Şahin ÇA, Efeçınar M, Şatıroğlu N (2010) Combination of cloud point extraction and flame atomic absorption spectrometry for preconcentration and determination of nickel and manganese ions in water and food samples. J Hazard Mater 176(1–3):672–677. https://doi.org/10.1016/j.jhazmat.2009.11.084
Sajid M (2017) Porous membrane protected micro-solid-phase extraction: a review of features, advancements and applications. Anal Chim Acta 965:36–53. https://doi.org/10.1016/j.aca.2017.02.023
Sajid M, Nazal MK, Ihsanullah BN, Osman AM (2018) Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: a critical review. Sep Purif Technol 191:400–423. https://doi.org/10.1016/j.seppur.2017.09.011
Saljooqi A, Shamspur T, Mohamadi M, Mostafavi A (2014) Application of a thiourea-containing task-specific ionic liquid for the solid-phase extraction cleanup of lead ions from red lipstick, pine leaves, and water samples. J Sep Sci 37(14):1856–1861. https://doi.org/10.1002/jssc.201400332
Sanchez-Rodas D, Corns W, Chen B, Stockwell PB (2010) Atomic fluorescence spectrometry: a suitable detection technique in speciation studies for arsenic, selenium, antimony and mercury. J Anal At Spectrom 25:933–946. https://doi.org/10.1039/b917755h
Santos E, Albo J, Irabien A (2014) Magnetic ionic liquids: synthesis, properties and applications. RSC Adv 4(75):40008–40018. https://doi.org/10.1039/C4RA05156D
Sarkar B (2002) Heavy metals in the environment. Marcel Dekker, Inc., New York. https://doi.org/10.1201/9780203909300
Savizi ISP, Janik MJ (2011) Acetate and phosphate anion adsorption linear sweep voltammograms simulated using density functional theory. Electrochim Acta 56(11):3996–4006. https://doi.org/10.1016/j.electacta.2011.02.013
Shaban M, Galaly AR (2016) Highly sensitive and selective in-situ SERS detection of Pb2+, Hg2+, and Cd2+ using Nanoporous membrane functionalized with CNTs. Sci Rep 6:25307. https://doi.org/10.1038/srep25307
Shakerian F et al (2016) Advanced polymeric materials: synthesis and analytical application of ion imprinted polymers as selective sorbents for solid phase extraction of metal ions. TrAC Trends Anal Chem 83:55–69. https://doi.org/10.1016/j.trac.2016.08.001
Sharma SK (2014) Heavy metals in water: presence, removal and safety. Royal Society of Chemistry, Cambridge. https://doi.org/10.1039/9781782620174
Shaw MJ, Haddad PR (2004) The determination of trace metal pollutants in environmental matrices using ion chromatography. Environ Int 30(3):403–431. https://doi.org/10.1016/j.envint.2003.09.009
Shemirani F, Majidi B (2010) Microextraction technique based on ionic liquid for preconcentration and determination of palladium in food additive, sea water, tea and biological samples. Food Chem Toxicol 48(6):1455–1460. https://doi.org/10.1016/j.fct.2010.03.005
Sikdar S, Kundu M (2018) A review on detection and abatement of heavy metals. ChemBioEng Rev 5(1):18–29. https://doi.org/10.1002/cben.201700005
Silva JJ, Paim LL, Stradiotto NR (2014) Simultaneous determination of iron and copper in ethanol fuel using nafion/carbon nanotubes electrode. Electroanalysis 26(8):1794–1800. https://doi.org/10.1002/elan.201400136
Silvestre CI, Santos JL, Lima JL, Zagatto EA (2009) Liquid–liquid extraction in flow analysis: a critical review. Anal Chim Acta 652(1–2):54–65. https://doi.org/10.1016/j.aca.2009.05.042
Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114(21):11060–11082. https://doi.org/10.1021/cr300162p
Sorouraddin SM, Farajzadeh MA, Najafpour Qarajeh H (2019) Phthalic acid as complexing agent and co-disperser for analysis of zinc and cadmium at trace levels from high volumes of sample on the base of an effervescence-assisted dispersive liquid-liquid microextraction. Microchem J 147:886–893. https://doi.org/10.1016/j.microc.2019.04.005
Šoukal J, Sturgeon RE, Musil S (2018) Efficient photochemical vapor generation of molybdenum for ICPMS detection. Anal Chem 90(19):11688–11695. https://doi.org/10.1021/acs.analchem.8b03354
Speltini A, Sturini M, Maraschi F, Profumo A (2016) Recent trends in the application of the newest carbonaceous materials for magnetic solid-phase extraction of environmental pollutants. Trends Environ Anal Chem 10:11–23. https://doi.org/10.1016/j.teac.2016.03.001
Sperling M (2014) Chromium. In: Reedijk J (ed) Reference module in chemistry, molecular sciences and chemical engineering. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-409547-2.11125-4
Stefanova V, Georgieva D, Kmetov V, Roman I, Canals A (2012) Unmodified manganese ferrite nanoparticles as a new sorbent for solid-phase extraction of trace metal–APDC complexes followed by inductively coupled plasma mass spectrometry analysis. J Anal At Spectrom 27(10):1743–1752. https://doi.org/10.1039/C2JA30139C
Štroffeková O, Planková A, Jánošová V, Sýkorová M, Havránek E (2008) Determination of Fe, Zn, Pb, Cd and Se content in medical plants by X-ray fluorescence analysis and galvanostatic stripping chronopotentiometric analysis. Acta Facultatis Pharmaceuticae Universitatis Comeniae 55:219–229
Sturgeon RE (2017) Photochemical vapor generation: a radical approach to analyte introduction for atomic spectrometry. J Anal At Spectrom 32(12):2319–2340. https://doi.org/10.1039/c7ja00285h
Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26(5):1788–1799. https://doi.org/10.1016/j.bios.2010.09.005
Sun J, Sun H, Liang Z (2017) Nanomaterials in electrochemiluminescence sensors. ChemElectroChem 4(7):1651–1662. https://doi.org/10.1002/celc.201600920
Tag K, Riedel K, Bauer H-J, Hanke G, Baronian KHR, Kunze G (2007) Amperometric detection of Cu2+ by yeast biosensors using flow injection analysis (FIA). Sensors Actuators B Chem 122(2):403–409. https://doi.org/10.1016/j.snb.2006.06.007
Taghizadeh M, Asgharinezhad AA, Pooladi M, Barzin M, Abbaszadeh A, Tadjarodi A (2013) A novel magnetic metal organic framework nanocomposite for extraction and preconcentration of heavy metal ions, and its optimization via experimental design methodology. Microchim Acta 180(11):1073–1084. https://doi.org/10.1007/s00604-013-1010-y
Tahmasebi E, Masoomi MY, Yamini Y, Morsali A (2015) Application of Mechanosynthesized Azine-decorated zinc(II) metal–organic frameworks for highly efficient removal and extraction of some heavy-metal ions from aqueous samples: a comparative study. Inorg Chem 54(2):425–433. https://doi.org/10.1021/ic5015384
Tan E, Yin P, Lang X, Zhang H, Guo L (2012) A novel surface-enhanced Raman scattering nanosensor for detecting multiple heavy metal ions based on 2-mercaptoisonicotinic acid functionalized gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 97:1007–1012. https://doi.org/10.1016/j.saa.2012.07.114
Tavallali H, Deilamy-Rad G, Peykarimah P (2013) Preconcentration and speciation of Cr(III) and Cr(VI) in water and soil samples by spectrometric detection via use of nanosized alumina-coated magnetite solid phase. Environ Monit Assess 185(9):7723–7738. https://doi.org/10.1007/s10661-013-3130-6
Templeton DM, Fujishiro H (2017) Terminology of elemental speciation – an IUPAC perspective. Coord Chem Rev 352:424–431. https://doi.org/10.1016/j.ccr.2017.02.002
Tiimub B, Dartey E, Avornyotse C (2015) Determination of selected heavy metals contamination in water from downstream of the Volta Lake at Manya Krobo district in eastern region of Ghana. Int Res J Public Environ Health 2(11):167–173. https://doi.org/10.15739/irjpeh.035
U.S.EPA (2004) Drinking water health advisory for manganese. U.S. Environmental Protection Agency
U.S.EPA (2012) Drinking water standards and health advisories. U.S. Environmental Protection Agency
U.S.EPA (2018) Edition of the drinking water standards and health advisories tables EPA 822-F-18-001 Office of Water Washington, DC. U.S. Environmental Protection Agency
Valenti G, Fiorani A, Li H, Sojic N, Paolucci F (2016) Essential role of electrode materials in electrochemiluminescence applications. ChemElectroChem 3(12):1990–1997. https://doi.org/10.1002/celc.201600602
Venkataprasad G, Reddy TM, Shaikshavali P, Gopal P (2018) A novel electrochemical sensor based on multi-walled carbon nanotubes/poly (L-methionine) for the investigation of 5-Nitroindazole: a voltammetric study. Anal Chem Lett 8(4):457–474. https://doi.org/10.1080/22297928.2018.1479304
Venkatesan AK et al (2018) Using single-particle ICP-MS for monitoring metal-containing particles in tap water. Environ Sci Water Res Technol 4(12):1923–1932. https://doi.org/10.1039/C8EW00478A
Vidal JC et al (2013) Electrochemical affinity biosensors for detection of mycotoxins: a review. Biosens Bioelectron 49:146–158. https://doi.org/10.1016/j.bios.2013.05.008
Wan Ibrahim WA, Abd Ali LI, Sulaiman A, Sanagi MM, Aboul-Enein HY (2014) Application of solid-phase extraction for trace elements in environmental and biological samples: a review. Crit Rev Anal Chem 44(3):233–254. https://doi.org/10.1080/10408347.2013.855607
Wang S-R, Wang S (2014) Ionic liquid-based hollow fiber-supported liquid-phase microextraction enhanced electrically for the determination of neutral red. J Food Drug Anal 22(4):418–424. https://doi.org/10.1016/j.jfda.2014.03.006
Wang Y, Kang J, Chen Y, Li R (2019) Sensitive analysis of copper in water by LIBS–LIF assisted by simple sample pretreatment. J Appl Spectrosc:1–7. https://doi.org/10.1007/s10812-019-00825-1
Weiss J (2016) Handbook of ion chromatography, vol 1, 4th edn. Wiley, Weinheim. https://doi.org/10.1002/9783527651610
WHO (2003) World Health Organization. Aluminium in drinking-water: background document for development of WHO Guidelines for drinking-water quality. In: WHO/SDE/WSH/03.04/53 (ed). Geneva
WHO (2004) World Health Organization. Guidelines for drinking-water quality. Third edition. Recommendations, vol 1, Geneva
WHO (2005a) World Health Organization. Mercury in drinking-water. In: WHO/SDE/WSH/05.08/10. (ed) Geneva
WHO (2005b) World Health Organization. Nickel in Drinking Water. Background document for development of WHO Guidelines for Drinking Water Quality. In: WHO/SDE/WSH/05.08/55 (ed). Geneva
WHO (2008) World Health Organization. Guidelines for drinking water quality. World Health Organization, Geneva
WHO (2010) World Health Organization. Childhood lead poisoning, Geneva
WHO (2011) World Health Organization. Guidelines for drinking-water quality. Fourth edition, Geneva
WHO (2018) World Health Organization. Water sanitation hygiene. Chemical hazard in drinking-water: chromium. In: Background document for development of WHO Guidelines for Drinking-water Quality, Geneva
Wilson ID, Adlard ER, Cooke M, Poole CF (2000) Encyclopedia of separation science. Academic, Cambridge
Wu YW et al (2012) Fe 3 O 4 @ZrO 2 nanoparticles magnetic solid phase extraction coupled with flame atomic absorption spectrometry for chromium(III) speciation in environmental and biological samples. Appl Surf Sci 258(18):6772–6776. https://doi.org/10.1016/j.apsusc.2012.03.057
WWDR (2003) The world water development report 1: water for people, water for life. UNESCO, Paris
Xie L, Jiang R, Zhu F, Liu H, Ouyang G (2014) Application of functionalized magnetic nanoparticles in sample preparation. Anal Bioanal Chem 406(2):377–399. https://doi.org/10.1007/s00216-013-7302-6
Yavuz E, Tokalıoğlu Ş, Patat Ş (2018) Dispersive solid-phase extraction with tannic acid functionalized graphene adsorbent for the preconcentration of trace beryllium from water and street dust samples. Talanta 190:397–402. https://doi.org/10.1016/j.talanta.2018.08.001
Yilmaz E, Soylak M (2016) Ultrasound assisted-deep eutectic solvent based on emulsification liquid phase microextraction combined with microsample injection flame atomic absorption spectrometry for valence speciation of chromium (III/VI) in environmental samples. Talanta 160:680–685. https://doi.org/10.1016/j.talanta.2016.08.001
Zare B, Nami M, Shahverdi AR (2017) Tracing tellurium and its nanostructures in biology. Biol Trace Elem Res 180(2):171–181. https://doi.org/10.1007/s12011-017-1006-2
Zare EN, Motahari A, Sillanpää M (2018) Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: a review. Environ Res 162:173–195. https://doi.org/10.1016/j.envres.2017.12.025
Zhang Y, Shi B, Zhao Y, Yan M, Lytle DA, Wang D (2016) Deposition behavior of residual aluminum in drinking water distribution system: effect of aluminum speciation. J Environ Sci 42:142–151. https://doi.org/10.1016/j.jes.2015.05.010
Zhao N et al (2019) On-line quantitative analysis of heavy metals in water based on laser-induced breakdown spectroscopy. Opt Express 27(8):A495–A506. https://doi.org/10.1364/OE.27.00A495
Zheng H et al (2019) Combination of sequential cloud point extraction and hydride generation atomic fluorescence spectrometry for preconcentration and determination of inorganic and methyl mercury in water samples. Microchem J 145:806–812. https://doi.org/10.1016/j.microc.2018.11.057
Zhou S, Yuan Z, Cheng Q, Zhang Z, Yang J (2018) Rapid in situ determination of heavy metal concentrations in polluted water via portable XRF: using Cu and Pb as example. Environ Pollut 243:1325–1333. https://doi.org/10.1016/j.envpol.2018.09.087
Zhou Y et al (2013) Production of a monoclonal antibody and development of an immunoassay for detection of Cr(III) in water samples. Chemosphere 93(10):2467–2472. https://doi.org/10.1016/j.chemosphere.2013.08.088
Zhu C, Yang G, Li H, Du D, Lin Y (2014) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87(1):230–249. https://doi.org/10.1021/ac5039863
Zhu H-q, Du J, Y-g L, T-m Z, Cheng F (2019) Selective determination of trace cobalt in zinc electrolytes by second-derivative catalytic polarography. J Cent South Univ 26(1):207–218. https://doi.org/10.1007/s11771-019-3994-x
Zou L, Gu Z, Sun M (2015) Review of the application of quantum dots in the heavy-metal detection. Toxicol Environ Chem 97(3–4):477–490. https://doi.org/10.1080/02772248.2015.1050201
Zou Z, Hu J, Xu F, Hou X, Jiang X (2019) Nanomaterials for photochemical vapor generation-analytical atomic spectrometry. TrAC Trends Anal Chem 114:242–250. https://doi.org/10.1016/j.trac.2019.03.012
Acknowledgements
This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (FONCYT) (Projects PICT-2016-2506-BID and PICT-2019-03859-BID) and Universidad Nacional de Cuyo (Project 06/M129).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Llaver, M., Oviedo, M.N., Quintas, P.Y., Wuilloud, R.G. (2021). Analytical Methods for the Determination of Heavy Metals in Water. In: Inamuddin, Ahamed, M.I., Lichtfouse, E., Altalhi, T. (eds) Remediation of Heavy Metals. Environmental Chemistry for a Sustainable World, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-80334-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-80334-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-80333-9
Online ISBN: 978-3-030-80334-6
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)