Skip to main content

Optical and Electrical Properties of Transition Metal Dichalcogenides (Monolayer and Bulk)

  • Chapter
  • First Online:
Optical and Electrical Properties of Nanoscale Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 318))

Abstract

In this chapter, we discuss the electronic band structure, electrical, and optical properties of transition metal dichalcogenides. The different crystallographic structures for transition metal dichalcogenides are presented along with a discussion of the chemical bonding. Many of the transition metal dichalcogenides consist of van der Waals bonded monolayers where the monolayers consist of trilayers with a transition metal atom layer between a top and bottom chalcogenide layer. Often these monolayers have a trigonal prismatic arrangement of chalcogenide atoms around the metal atoms. A tight binding model for three of the \(d\) orbitals of the transition metal atoms provides a useful description of the highest energy valence band and lowest energy conduction bands of trigonal prismatic monolayer transition metal dichalcogenide. The impact of spin orbit coupling on the band structure is shown. We discuss how the electronic band structure due to the honeycomb lattice of many transition metal dichalcogenides monolayers interacts with spin orbit coupling resulting in differences in optical transitions between the \(K\) and \(K^{\prime}\) locations in the Brillouin zone. We present photoluminescence spectra demonstrating these differences. We also show theoretical and experimental dielectric function data for a variety of monolayer, multilayer, and bulk transition metal dichalcogenides. We show how Raman spectroscopy is sensitive to the layer structure. We also discuss the observation of superconductivity of TMD materials. A summary of the point group and space group symmetry and Raman Tensors of transition metal dichalcogenides is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)

    Article  Google Scholar 

  2. H. Zeng, X. Cui, An optical spectroscopic study on two dimensional group-VI transition metal dichalcogenides. Chem. Soc. Rev. 44, 2629–2642 (2015)

    Article  CAS  Google Scholar 

  3. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010)

    Article  CAS  Google Scholar 

  4. W. Jin, P.-C. Yeh, N. Zaki, D. Zhang, J.T. Sadowski, A. Al-Mahboob, A.M. van der Zande, D.A. Chenet, J.I. Dadap, I.P. Herman, P. Sutter, J. Hone, R.M. Osgood, Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. J. Phys. Rev. Lett. 111, 106801 (2013)

    Google Scholar 

  5. A.V. Kolobov, J. Tominaga, Electronic band structure of 2D TMDCs, Chap. 6 in Two-Dimensional Transition-Metal Dichalcogenides. Springer Series in Materials Science, vol. 239 (Springer, Switzerland, 2016), pp. 165–226. See p. 198

    Google Scholar 

  6. M. Bernardi, C. Ataca, M. Palummo, J.C. Grossman, Optical and electrical properties of two dimensional layered materials. Nanophotonics 5, 111–125 (2016)

    Google Scholar 

  7. G.-B. Liu, D. Xiao, X. Xu, W. Yao, Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 44, 2643 (2015)

    Article  CAS  Google Scholar 

  8. A.N. Enyashin, G. Seifert, Electronic properties of MoS2 monolayer and related structures. Nanosyst.: Phys. Chem. Math. 5, 517–539 (2014)

    Google Scholar 

  9. C. Gong, H. Zhang, W. Wang, L. Colombo, R.M. Wallace, K. Cho, Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013)

    Google Scholar 

  10. A.V. Kolobov, J. Tominaga, Bulk TMDCs: review of structure and properties, Chap. 3 in Two-Dimensional Transition-Metal Dichalcogenides. Springer Series in Materials Science, vol. 239 (Springer, Switzerland, 2016), pp. 29–77

    Google Scholar 

  11. G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, D. Xiao, Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013). For plots of the 3 Band solution from Liu, et al., see L. Szulakowska, Studies of electronic properties of atomically thin nanostructures with tight-binding model and DFT methods. Master’s Thesis, Wydział Podstawowych Problemów Techniki

    Google Scholar 

  12. J.Á. Silva-Guillén, P. San-Jose, R. Roldán, Electronic band structure of transition metal dichalcogenides from ab initio and Slater-Koster tight-binding model. Appl. Sci. 6, 284 (2016)

    Article  Google Scholar 

  13. M.D. Jaffee, J. Singh, Inclusion of spin orbit coupling into tight binding band structure calculations for bulk and superlattice semiconductors. Solid State Commun. 62, 399–402 (1987)

    Article  Google Scholar 

  14. F.A. Rasmussen, K.S. Thygesen, Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119, 13169–13183 (2015)

    Article  CAS  Google Scholar 

  15. K. Kosmider, J.W. Gonzalez, J. Fernandez-Rossier, Large spin splitting in the conduction band of transition metal dichalcogenide monolayers. Phys. Rev. B 88, 245436 (2013)

    Google Scholar 

  16. X. Xu, W. Yao, D. Xiao, T.F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014)

    Article  CAS  Google Scholar 

  17. K.F. Mak, K. He, J. Shan, T.F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotech. 7, 494–498 (2012)

    Article  CAS  Google Scholar 

  18. D. Xiao, M.-C. Chang, Q. Niu, Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010)

    Article  CAS  Google Scholar 

  19. D. Xiao, G.-B. Liu, W. Feng, X. Xu, W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012)

    Google Scholar 

  20. M.-C. Chang, Q. Niu, Berry phase, hyperorbits, and the Hofstadter spectrum: semiclassical dynamics in magnetic Bloch bands. Phys. Rev. B 53, 710–7023 (1996)

    Article  Google Scholar 

  21. T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, J. Feng, Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Comm. 3, 887 (2012)

    Article  Google Scholar 

  22. D.Y. Qiu, F.H. da Jornada, S.G. Louie, Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013)

    Google Scholar 

  23. M.M. Ugeda, A.J. Bradley, S.-F. Shi, F.H. da Jornada, Y. Zhang, D.Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S.G. Louie, M.F. Crommie, Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014)

    Article  CAS  Google Scholar 

  24. B. Zhu, X. Chen, X. Cui, Exciton binding energy of monolayer WS2, Nat. Sci. Rep. 17, 9218 (2015)

    Google Scholar 

  25. H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, L.-J. Li, Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Appl. Phys. Lett. 105, 201905 (2014)

    Google Scholar 

  26. S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12, 5576–5580 (2012)

    Article  CAS  Google Scholar 

  27. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, G. Eda, Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013)

    Google Scholar 

  28. J. He, K. Hummer, C. Franchini, Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 89, 075409 (2014)

    Google Scholar 

  29. H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, X. Cui, Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Nat. Sci. Rep. 3, 1608 (2013)

    Google Scholar 

  30. A. Stan, N.E. Dahlen, R. van Leeuwen, Levels of self-consistency in the GW approximation. J. Chem. Phys. 130, 114105 (2009)

    Google Scholar 

  31. W. Zhao, R.M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A.H. Castro Neto, G. Eda, Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. Nano Lett. 13, 5627–5634 (2013)

    Google Scholar 

  32. L. Wang, E.-M. Shih, A. Ghiotto, L. Xian, D.A. Rhodes, C. Tan, M. Claassen, D.M. Kennes, Y. Bai, B. Kim, K. Watanabe, T. Taniguchi, X. Zhu, J. Hone, A. Rubio, A. Pasupathy, C.R. Dean, Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020)

    Article  CAS  Google Scholar 

  33. S. Huang, X. Ling, L. Liang, J. Kong, H. Terrones, V. Meunier, M.S. Dresselhaus, Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano Lett. 14, 5500 (2014)

    Article  CAS  Google Scholar 

  34. A.M. van der Zande, J. Kunstmann, A. Chernikov, D.A. Chenet, Y.-M. You, X.X. Zhang, P.Y. Huang, T.C. Berkelbach, L. Wang, F. Zhang, M.S. Hybertsen, D.A. Muller, D.R. Reichman, T.F. Heinz, J.C. Hone, Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 14, 3869–3875 (2014)

    Article  Google Scholar 

  35. C. Yim, M. O'Brien, N. McEvoy, S. Winters, I. Mirza, J.G. Lunney, G.S. Duesberg, Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry. Appl. Phys. Lett. 104, 103114 (2014)

    Google Scholar 

  36. S.M. Eichfeld, C.M. Eichfeld, Y-C Lin, L. Hossain, J.A. Robinson, Rapid, non-destructive evaluation of ultrathin WSe2 using spectroscopic ellipsometry. APL Mater. 2, 092508 (2014)

    Google Scholar 

  37. A.R. Beal, H.P. Hughes, W.Y. Liang, The reflectivity spectra of some group VA transition metal dichalcogenides. J. Phys. C: Sol. Stat. Phys. 8, 4236–4248 (1975)

    Google Scholar 

  38. A.R. Beal, W.Y Liang, H.P. Hughes, Kramers-Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H WS2. J. Phys. C: Sol. Stat. Phys. 9, 2449–2457 (1976)

    Google Scholar 

  39. A.R. Beal, W.Y Liang, H.P. Hughes, Kramers-Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H WS2. J. Phys. C: Sol. Stat. Phys. 12, 881–890 (1979)

    Google Scholar 

  40. M.M. Benameur, B. Radisavljevic, J.S. Héron, S. Sahoo, H. Berger, A. Kis, Visibility of dichalcogenide nanolayers. Nanotechnology 22, 125706 (2011)

    Google Scholar 

  41. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 4, 2695 (2010)

    Article  CAS  Google Scholar 

  42. P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D.R.T. Zahn, S. Michaelis de Vasconcellos, R. Bratschitsch, Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 21, 4908–4916 (2013)

    Article  CAS  Google Scholar 

  43. N. Scheuschner, R. Gillen, M. Staiger, J. Maultzsch, Interlayer resonant Raman modes in few-layer MoS2. Phys. Rev. B 91, 235409 (2015)

    Google Scholar 

  44. A.V. Kolobov, J. Tominaga, Raman scattering of 2D TMDCs, Chap. 7 in Two-Dimensional Transition-Metal Dichalcogenides. Springer Series in Materials Science, vol. 239 (Springer, Switzerland, 2016), pp. 227–294

    Google Scholar 

  45. Y. Zhao, X. Luo, H. Li, J. Zhang, P.T. Araujo, C.K. Gan, J. Wu, H. Zhang, S.Y. Quek, M.S. Dresselhaus, Q. Xiong, Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 13, 1007–1015 (2013)

    Article  CAS  Google Scholar 

  46. X. Xi, Z. Wang, W. Zhao, J.-H. Park, K.T. Law, H. Berger, Ising pairing in superconducting NbSe2 atomic layers. L. Nat. Phys. 12, 138–144 (2015)

    Google Scholar 

  47. S.M. Nie, Z. Song, H. Weng, Z. Fang, Quantum spin Hall effect in two-dimensional transition-metal dichalcogenide haeckelites. Phys. Rev. B 91, 235434 (2015)

    Google Scholar 

  48. H.-P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503 (2012)

    Google Scholar 

  49. N.F.Q. Yuan, B.T. Zhou, W.-Y. He, K.T. Law, Ising superconductivity in transition metal dichalcogenides. AAPPS Bul. 26, 12–19 (2016)

    CAS  Google Scholar 

  50. Y. Saito, Y. Nakamura, M.S. Bahramy, Y. Kohama, J. Ye, Y. Kasahara, Y. Nakagawa, M. Onga, M. Tokunaga, T. Nojima, Y. Yanase, Y. Iwasa, Superconductivity protected by spin–valley locking in ion-gated MoS2. Nat. Phys. 12, 144–150 (2016)

    Article  CAS  Google Scholar 

  51. W. Shi, J. Ye, Y. Zhang, R. Suzuki, M. Yoshida, J. Miyazaki, N. Inoue, Y. Saito, Y. Iwasa, Superconductivity series in transition metal dichalcogenides by ionic gating. Sci. Rep. 5, 12534 (2015)

    Article  CAS  Google Scholar 

  52. E. Sohn, X. Xi, W.-Y. He, S. Jiang, Z. Wang, K. Kang, J.-H. Park, H. Berger, L. Forró, K.T. Law, J. Shan, K.F. Mak, An unusual continuous paramagnetic-limited superconducting phase transition in 2D NbSe2. Nat. Mater. 17, 504–509 (2015). https://doi.org/10.1038/s41563-018-0061-1 and supplemental

  53. R. Winkler, Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Erlangen, 2003), Chapter 6

    Google Scholar 

  54. D.A. Rhodes, A. Jindal, N.F.Q. Yuan, Y. Jung, A. Antony, H. Wang, B. Kim, Y.-c. Chiu, T. Taniguchi, K. Watanabe, K. Barmak, L. Balicas, C.R. Dean, X. Qian, L. Fu, A.N. Pasupathy, J. Hone, Enhanced superconductivity in monolayer Td‑MoTe2. Nano Lett. 21, 2505−2511 (2021)

    Google Scholar 

  55. E. Sajadi, T. Palomaki, Z. Fei, W. Zhao, P. Bement, C. Olsen, S. Luescher, X. Xu, J.A. Folk, D.H. Cobden, Gate-induced superconductivity in a monolayer topological insulator. Science 362, 922–925 (2018)

    Article  CAS  Google Scholar 

  56. J.-X. Zhu, Bogoliubov-de Gennes Method and Its Applications (Springer, Switzerland, 2016), pp. 3–64

    Google Scholar 

  57. J.M. Lu, O. Zeliuk, I. Leermakers, N.F.Q. Yuan, U. Zeitler, K.T. Law, J.T. Ye, Two dimensional ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015). https://doi.org/10.1126/science.aab2277

    Article  CAS  Google Scholar 

  58. A. Eckmann, J. Park, H. Yang, D. Elias, A.S. Mayorov, G. Yu, R. Jalil, K.S. Novoselov, R.V. Gorbachev, M. Lazzeri, A.K. Geim, C. Casiraghi, Raman fingerprint of aligned graphene/h-BN superlattices. Nano Lett. 13, 5242–5246 (2013)

    Article  CAS  Google Scholar 

  59. R. Ribeiro-Palau, C. Zhang, K. Watanabe, T. Taniguchi, J. Hone, C.R. Dean, Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018)

    Article  CAS  Google Scholar 

  60. A.J. Green, A.C. Diebold, Thickness and rotational effects in simulated HRTEM images of graphene on hexagonal boron nitride. Microsc. Microanal. 20, 1753–1763 (2014)

    Article  CAS  Google Scholar 

  61. B.K. Choi, S. Ulstrup, S.M. Gunasekera, J. Kim, S.Y. Lim, L. Moreschini, J.S. Oh, S.-H. Chun, C. Jozwiak, A. Bostwick, E. Rotenberg, H. Cheong, I.-W. Lyo, M. Mucha-Kruczynski, Y.J. Chang, Visualizing orbital content of electronic bands in anisotropic 2D semiconducting ReSe2. ACS Nano 14, 7880–7891 (2020)

    Article  CAS  Google Scholar 

  62. G.A. Ermolaev, D.I. Yakubovsky, Y.V. Stebunov, A.V. Arsenin, V.S. Volkov, Spectral ellipsometry of monolayer transition metal dichalcogenides: analysis of excitonic peaks in dispersion. J. Vac. Sci. Technol. B 38, 014002 (2020)

    Google Scholar 

  63. J. Ribeiro-Soares, R.M. Almeida, E B. Barros, P.T. Araujo, M.S. Dresselhaus, L.G. Cançado, A. Jorio, Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Phys. Rev. B 90, 115438 (2014)

    Google Scholar 

  64. A.H. Barajas-Aguilar, J.C. Irwin, A.M. Garay-Tapia, T.Schwarz, F. Paraguay Delgado, P.M. Brodersen, R. Prinja, N. Kherani, S.J. Jiménez Sandoval, Crystalline structure, electronic and lattice-dynamics properties of NbTe2. Sci. Rep. 8, 16984 (2018)

    Google Scholar 

  65. B.E. Brown, The crystal structures of WTe2 and high-temperature MoTe2. Acta Crystallogr. 20, 268–274 (1966)

    Article  CAS  Google Scholar 

  66. N.W. Alcock, A. Kjekshus, The crystal structure of ReSe2. Acta Chem. Scand. 19, 79–94 (1965). https://www.sciencedirect.com/science/article/abs/pii/0022508871901688

  67. J.C. Wildervanck, F. Jellinek, The dichalcogenides of technetium and rhenium. J. Less Common Met. 24, 73–81 (1971)

    Article  CAS  Google Scholar 

  68. E.J. Sie, C.M. Nyby, C.D. Pemmaraju, S.J. Park, X. Shen, J. Yang, M.C. Hoffmann, B.K. Ofori-Okai, R. Li, A.H. Reid, S. Weathersby, E. Mannebach, N. Finney, D. Rhodes, D. Chenet, A. Antony, L. Balicas, J. Hone, T.P. Devereaux, T.F. Heinz, X. Wang, A.M. Lindenberg, An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019)

    Article  CAS  Google Scholar 

  69. X. Ma, P. Guo, C. Yi, Q. Yu, A. Zhang, J. Ji, Y. Tian, F. Jin, Y. Wang, K. Liu, T. Xia, Y. Shi, Q. Zhang, Raman scattering in the transition-metal dichalcogenides of 1T-MoTe2, Td-MoTe2, and Td-WTe2. Phys. Rev. B 94, 214105 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Diebold .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diebold, A., Hofmann, T. (2021). Optical and Electrical Properties of Transition Metal Dichalcogenides (Monolayer and Bulk). In: Optical and Electrical Properties of Nanoscale Materials. Springer Series in Materials Science, vol 318. Springer, Cham. https://doi.org/10.1007/978-3-030-80323-0_8

Download citation

Publish with us

Policies and ethics