Skip to main content

Techniques to Study Metabolism

  • Chapter
  • First Online:
Thyroid, Obesity and Metabolism
  • 707 Accesses

Abstract

Metabolism represents the “ensemble” of biochemical reactions, ensuring proper cell homeostasis and correct body functioning. The redox reactions of chemical species lead to energy transformation and heat production. Different strategies have been developed over the time to measure the energy consumed by the body to maintain its homeostasis during daily life as well as to investigate specific metabolic pathways and biochemical substrates utilization. In this chapter, a brief overview is offered on the application of the key techniques to examine human metabolism.

Direct calorimetry is performed in a confined space and relies on body heat production to evaluate energy expenditure. The method is time-consuming and requires an isolated chamber specifically equipped for the purpose. Indirect calorimetry is the technique that assesses energy expenditure through measuring O2 and CO2 exchanges, which reflect body energy consumption. Indirect calorimetry allows to obtain data on substrate oxidation.

Doubly labelled water is a very accurate system for measuring energy expenditure in free-living condition. It uses spectrometric measure of labelled isotopes (2H, 18O) excreted through urine and breath to estimate metabolic rate. Accelerometers are devices that estimate energy expenditure by computing body movements with accessory biological measures. Their accuracy is still debated, especially in obese subjects. Finally, magnetic resonance spectrometry is a technique employed to explore biochemical pathways and metabolic fate of energy substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rolfe DFS, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997;77:731. https://doi.org/10.1152/physrev.1997.77.3.731.

    Article  CAS  PubMed  Google Scholar 

  2. Jonckheer J, Vergaelen K, Spapen H, Malbrain MLNG, De Waele E. Modification of nutrition therapy during continuous renal replacement therapy in critically ill pediatric patients: a narrative review and recommendations. Nutr Clin Pract. 2019;34:37–47. https://doi.org/10.1002/ncp.10231.

    Article  PubMed  Google Scholar 

  3. Lam YY, Ravussin E. Indirect calorimetry: an indispensable tool to understand and predict obesity. Eur J Clin Nutr. 2017;71:1197–202. https://doi.org/10.1038/ejcn.2016.220.

    Article  Google Scholar 

  4. van Herwaarden S, Iervolino E. Calorimetry measurement. In: Measurement instrumentation, sensors handbook: spatial, mechanical, thermal, and radiation measurement. 2nd ed. London: Wiley; 2017. https://doi.org/10.1201/b15474.

    Chapter  Google Scholar 

  5. Kenny GP, Notley SR, Gagnon D. Direct calorimetry: a brief historical review of its use in the study of human metabolism and thermoregulation. Eur J Appl Physiol. 2017;117:1965–85. https://doi.org/10.1007/s00421-017-3670-5.

    Article  Google Scholar 

  6. Walsberg GE, Hoffman TCM. Direct calorimetry reveals large errors in respirometric estimates of energy expenditure. J Exp Biol. 2005;208:1035–43. https://doi.org/10.1242/jeb.01477.

    Article  PubMed  Google Scholar 

  7. Haugen AH, Chan LN, Li F. Indirect calorimetry: a practical guide for clinicians. Nutr Clin Pract. 2007;22:377–88. https://doi.org/10.1177/0115426507022004377.

    Article  PubMed  Google Scholar 

  8. McArthur C. Indirect calorimetry. Respir Care Clin N Am. 1997;3:291–307. https://doi.org/10.1097/00044067-200305000-00005.

    Article  CAS  PubMed  Google Scholar 

  9. Da Rocha EEM, Alves VGF, Da Fonseca RBV. Indirect calorimetry: methodology, instruments and clinical application. Curr Opin Clin Nutr Metab Care. 2006;9:247–56. https://doi.org/10.1097/01.mco.0000222107.15548.f5.

    Article  PubMed  Google Scholar 

  10. Chatterjea MN, Shinde R. Textbook of medical biochemistry. 8th ed. Jaypee Brothers Medical Publishers; 2012.

    Google Scholar 

  11. Popp CJ, Tisch JJ, Sakarcan KE, Bridges WC, Jesch ED. Approximate time to steady-state resting energy expenditure using indirect calorimetry in young, healthy adults. Front Nutr. 2016;3:49. https://doi.org/10.3389/fnut.2016.00049.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brandi LS, Bertolini R, Calafà M. Indirect calorimetry in critically ill patients: clinical applications and practical advice. Nutrition. 1997;13:349–58. https://doi.org/10.1016/s0899-9007(97)83059-6.

    Article  CAS  PubMed  Google Scholar 

  13. Overstreet BS, Bassett DR, Crouter SE, Rider BC, Parr BB. Portable open-circuit spirometry systems. J Sports Med Phys Fitness. 2017;57:227–37. https://doi.org/10.23736/S0022-4707.16.06049-7.

    Article  PubMed  Google Scholar 

  14. Maughan RJ. Sport and exercise nutrition. In: Caballero B, editor. Encyclopedia of human nutrition. 3rd ed. Academic Press; 2013. p. 204–8. ISBN 9780123848857. https://doi.org/10.1016/B978-0-12-375083-9.00253-1.

  15. Macfarlane DJ. Open-circuit respirometry: a historical review of portable gas analysis systems. Eur J Appl Physiol. 2017;117:2369–86. https://doi.org/10.1007/s00421-017-3716-8.

    Article  CAS  PubMed  Google Scholar 

  16. Wolinsky IJAD. Sports nutrition energy metabolism and exercise. Boca Raton: Taylor and Francis; 2008.

    Google Scholar 

  17. Buchowski MS. Doubly labeled water is a validated and verified reference standard in nutrition research. J Nutr. 2014;144:573–4. https://doi.org/10.3945/jn.114.191361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Westerterp KR. Doubly labelled water assessment of energy expenditure: principle, practice, and promise. Eur J Appl Physiol. 2017;117:1277–85. https://doi.org/10.1007/s00421-017-3641-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schoeller DA. Measurement of energy expenditure in free-living humans by using doubly labeled water. J Nutr. 1988;118:1278–89. https://doi.org/10.1093/jn/118.11.1278.

    Article  CAS  PubMed  Google Scholar 

  20. Pisanu S, Deledda A, Loviselli A, Huybrechts I, Velluzzi F. Validity of accelerometers for the evaluation of energy expenditure in obese and overweight individuals: a systematic review. J Nutr Metab. 2020;2020:2327017. https://doi.org/10.1155/2020/2327017.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Papazoglou D, Augello G, Tagliaferri M, Savia G, Marzullo P, Maltezos E, Liuzzi A. Evaluation of a multisensor armband in estimating energy expenditure in obese individuals. Obesity. 2006;14:2217–23. https://doi.org/10.1038/oby.2006.260.

    Article  PubMed  Google Scholar 

  22. Faghihi R, Zeinali-Rafsanjani B, Mosleh-Shirazi MA, Saeedi-Moghadam M, Lotfi M, Jalli R, Iravani V. Magnetic resonance spectroscopy and its clinical applications: a review. J Med Imaging Radiat Sci. 2017;48:233–53. https://doi.org/10.1016/j.jmir.2017.06.004.

    Article  PubMed  Google Scholar 

  23. Van Der Graaf M. In vivo magnetic resonance spectroscopy: basic methodology and clinical applications. Eur Biophys J. 2010;39:527–40. https://doi.org/10.1007/s00249-009-0517-y.

    Article  CAS  PubMed  Google Scholar 

  24. Codella R. Mitochondrial and non-mitochondrial studies of ATP synthesis. In: Cellular physiology and metabolism of physical exercise. Milan: Springer; 2012. p. 43–53.

    Chapter  Google Scholar 

  25. Boesch C, Machann J, Vermathen P, Schick F. Role of proton MR for the study of muscle lipid metabolism. NMR Biomed. 2006;19:968–88. https://doi.org/10.1002/nbm.1096.

    Article  CAS  PubMed  Google Scholar 

  26. Hsu AC, Joan Dawson M. Accuracy of 1H and 31P MRS analyses of lactate in skeletal muscle. Magn Reson Med. 2000;44:418–26. https://doi.org/10.1002/1522-2594(200009)44:3<418::AID-MRM12>3.0.CO;2-G.

    Article  CAS  PubMed  Google Scholar 

  27. Richardson RS, Duteil S, Wary C, Wray DW, Hoff J, Carlier PG. Human skeletal muscle intracellular oxygenation: the impact of ambient oxygen availability. J Physiol. 2006;571:415–54. https://doi.org/10.1113/jphysiol.2005.102327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alves TC, Befroy DE, Kibbey RG, Kahn M, Codella R, Carvalho RA, Petersen KF, Shulman GI, Falk Petersen K, Shulman GI. Regulation of hepatic fat and glucose oxidation in rats with lipid-induced hepatic insulin resistance. Hepatology. 2011;53:1175–81.

    Article  CAS  Google Scholar 

  29. Jue T, Rothman DL, Shulman GI, Tavitian BA, DeFronzo RA, Shulman RG. Direct observation of glycogen synthesis in human muscle with 13C NMR. Proc Natl Acad Sci U S A. 1989;86:4489–91. https://doi.org/10.1073/pnas.86.12.4489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300:1140–2.

    Article  CAS  Google Scholar 

  31. Kemp GJ, Radda GK. Quantitative interpretation of bioenergetic data from 31P and 1H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review. Magn Reson Q. 1994;10:43–63.

    CAS  PubMed  Google Scholar 

  32. Choi CS, Befroy DE, Codella R, et al. Paradoxical effects of increased expression of PGC-1 on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Proc Natl Acad Sci. 2008;105:19926–31.

    Article  CAS  Google Scholar 

  33. Chance B, Leigh JS Jr, Clark BJ, Maris J, Kent J, Nioka SSD. Control of oxidative metabolism and oxygen delivery in human skeletal muscle: a steady-state analysis of the work/energy cost transfer function. Proc Natl Acad Sci U S A. 1985;82:8384–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Codella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Codella, R. (2021). Techniques to Study Metabolism. In: Luzi, L. (eds) Thyroid, Obesity and Metabolism. Springer, Cham. https://doi.org/10.1007/978-3-030-80267-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80267-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80266-0

  • Online ISBN: 978-3-030-80267-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics