Skip to main content

Muscle Tissue in Hypothyroidism and Hyperthyroidism

  • Chapter
  • First Online:
Thyroid, Obesity and Metabolism
  • 704 Accesses

Abstract

Skeletal muscle (SM) metabolism is strictly controlled by both thyroid hormones and insulin action.

SM plasticity gives the muscle the ability to regenerate after a damage thanks to proliferation, fusion, and differentiation of resident, undifferentiated, mononuclear satellite cells (SCs).

The transcription factor paired box 7 (Pax7) represents a marker of quiescent satellite stem cells (Pax7+) in skeletal muscle, while skeletal muscle-specific myogenic regulatory factors (MRFs: MyoD, myogenin, MYF-5, MRF4) drive muscle differentiation.

Based on the molecular marker expression, myoblasts fuse with damaged myofibers to repair them or fuse together to generate new multinucleated myofibers, and new self-renewed satellite cells to maintain their own population.

Thyroid plays an important role in muscle tissue contraction, formation, and repair regulation, mediated by both blood and local tissue concentration of thyroid hormones (TH: thyroxine or T4 and triiodothyronine or T3) modulated by TH transporters/receptors efficiency and by enzyme deiodinase (DIO2, DIO3) activity.

DIO3 supports the proliferation of myoblasts and is essential for the stem cell activation program, and DIO2 plays a critical role in differentiation and fusion process to form the muscle fibers.

Duration and extent of thyroid hormone deficiency are often correlated with severity of muscle pain. In this contest, hypothyroid myopathy represents the most important clinical problem consequent to mitochondrial dysfunction associated with fiber switch, fast muscle fibers loss, and muscle insulin resistance.

Muscle weakness, exacerbation of muscle fatigue, and exercise intolerance characterize both hypothyroidism and hyperthyroidism. Hyperthyroidism is also associated with vision loss and thyrotoxic periodic paralysis with serious cardiopulmonary complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salvatore D, Simonides WS, Dentice M, Zavacki AM, Larsen PR. Thyroid hormones and skeletal muscle—new insights and potential implications. Nat Rev Endocrinol. 2014;10:206–14. https://doi.org/10.1038/nrendo.2013.238.

    Article  CAS  PubMed  Google Scholar 

  2. Bloise FF, Cordeiro A, Ortiga-Carvalho TM. Role of thyroid hormone in skeletal muscle physiology. J Endocrinol. 2018;236(1):R57–68. https://doi.org/10.1530/JOE-16-0611.

    Article  PubMed  Google Scholar 

  3. Dave HD, Shook M, Varacallo M. Anatomy, skeletal muscle. In: StatPearls [Internet]. Treasure Island, FL: StatPearls; 2020.

    Google Scholar 

  4. Widmann M, Nieß AM, Munz B. Physical exercise and epigenetic modifications in skeletal muscle. Sports Med. 2019;49(4):509–23. https://doi.org/10.1007/s40279-019-01070-4.

    Article  PubMed  Google Scholar 

  5. Sartori R, Romanello V, Sandri M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun. 2021;12(1):330. https://doi.org/10.1038/s41467-020-20123-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite cells and skeletal muscle regeneration. Compr Physiol. 2015;5(3):1027–59. https://doi.org/10.1002/cphy.c140068.

    Article  PubMed  Google Scholar 

  7. Morgan JE, Partridge TA. Muscle satellite cells. Int J Biochem Cell Biol. 2003;35(8):1151–6.

    Article  CAS  PubMed  Google Scholar 

  8. Chen B, Shan T. The role of satellite and other functional cell types in muscle repair and regeneration. J Muscle Res Cell Motil. 2019;40(1):1–8. Epub 2019 Apr 9. https://doi.org/10.1007/s10974-019-09511-3.

    Article  PubMed  Google Scholar 

  9. Asfour HA, Allouh MZ, Said RS. Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery. Exp Biol Med (Maywood). 2018;243(2):118–28. Epub 2018 Jan 7. PMID: 29307280; PMCID: PMC5788151. https://doi.org/10.1177/1535370217749494.

    Article  CAS  Google Scholar 

  10. Olguín HC, Pisconti A. Marking the tempo for myogenesis: Pax7 and the regulation of muscle stem cell fate decisions. J Cell Mol Med. 2012;16(5):1013–25. https://doi.org/10.1111/j.1582-4934.2011.01348.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kansal R, Kanojia RK, Kumar V, Vaiphei K, Dhillon MS. Role of PAX-7 as a tissue marker in mangled extremity: a pilot study. Eur J Orthop Surg Traumatol. 2019;29(5):1131–40. Epub 2019 Mar 9. https://doi.org/10.1007/s00590-019-02410-w.

    Article  PubMed  Google Scholar 

  12. Yoshida N, Yoshida S, Koishi K, et al. Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates ‘reserve cells’. J Cell Sci. 1998;111(Pt 6):769–79.

    Article  CAS  PubMed  Google Scholar 

  13. Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol. 2017;72:19–32. https://doi.org/10.1016/j.semcdb.2017.11.011.

    Article  CAS  PubMed  Google Scholar 

  14. Hwang AB, Brack AS. Muscle stem cells and aging. Curr Top Dev Biol. 2018;126:299–322. Epub 2017 Nov 16. https://doi.org/10.1016/bs.ctdb.2017.08.008.

    Article  PubMed  Google Scholar 

  15. Fukada SI, Akimoto T, Sotiropoulos A. Role of damage and management in muscle hypertrophy: different behaviors of muscle stem cells in regeneration and hypertrophy. Biochim Biophys Acta Mol Cell Res. 2020;1867(9):118742. https://doi.org/10.1016/j.bbamcr.2020.118742.

    Article  CAS  PubMed  Google Scholar 

  16. Schwartz LM. Skeletal muscles do not undergo apoptosis during either atrophy or programmed cell death-revisiting the Myonuclear domain hypothesis. Front Physiol. 2019;9:1887. https://doi.org/10.3389/fphys.2018.01887.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Metter EJ, Talbot LA, Schrager M, Conwit R. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol A Biol Sci Med Sci. 2002;57(10):B359–65. https://doi.org/10.1093/gerona/57.10.b359.

    Article  PubMed  Google Scholar 

  18. Zhou X, Wang JL, Lu J, Song Y, Kwak KS, Jiao Q, Rosenfeld R, Chen Q, Boone T, Simonet WS, Lacey DL, Goldberg AL, Han HQ. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell. 2010;142(4):531–43. https://doi.org/10.1016/j.cell.2010.07.011.

    Article  CAS  PubMed  Google Scholar 

  19. Woo J. Sarcopenia. Clin Geriatr Med. 2017;33(3):305–14. Epub 2017 May 13. https://doi.org/10.1016/j.cger.2017.02.003.

    Article  PubMed  Google Scholar 

  20. Qaisar R, Larsson L. What determines myonuclear domain size? Indian J Physiol Pharmacol. 2014;58(1):1–12.

    CAS  PubMed  Google Scholar 

  21. Strassburger E. Ûber die wirkungssphäre der kerne und die zellgrösse. Histol Beitr. 1893;5:97–124.

    Google Scholar 

  22. Dalbo VJ, Roberts MD, Mobley CB, Ballmann C, Kephart WC, Fox CD, Santucci VA, Conover CF, Beggs LA, Balaez A, Hoerr FJ, Yarrow JF, Borst SE, Beck DT. Testosterone and trenbolone enanthate increase mature myostatin protein expression despite increasing skeletal muscle hypertrophy and satellite cell number in rodent muscle. Andrologia. 2017;49(3). https://doi.org/10.1111/and.12622.

  23. Masschelein E, D’Hulst G, Zvick J, Hinte L, Soro-Arnaiz I, Gorski T, von Meyenn F, Bar-Nur O, De Bock K. Exercise promotes satellite cell contribution to myofibers in a load-dependent manner. Skelet Muscle. 2020;10(1):21. https://doi.org/10.1186/s13395-020-00237-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Englund DA, Murach KA, Dungan CM, Figueiredo VC, Vechetti IJ Jr, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Depletion of resident muscle stem cells negatively impacts running volume, physical function, and muscle fiber hypertrophy in response to lifelong physical activity. Am J Physiol Cell Physiol. 2020;318(6):C1178–88. https://doi.org/10.1152/ajpcell.00090.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bruusgaard JC, Johansen IB, Egner IM, Rana ZA, Gundersen K. Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining. Proc Natl Acad Sci U S A. 2010;107:15111–6. https://doi.org/10.1073/pnas.0913935107.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Duddy WJ, Cohen T, Duguez S, Partridge TA. The isolated muscle fibre as a model of disuse atrophy: characterization using PhAct, a method to quantify f-actin. Exp Cell Res. 2011;317:1979–93. https://doi.org/10.1016/j.yexcr.2011.05.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Van Mullem AA, van Gucht ALM, Visser WE, Meima ME, Peeters RP, Visser TJ. Effects of thyroid hormone transporters MCT8 and MCT10 on nuclear activity of T3. Mol Cell Endocrinol. 2016;437:252–60. https://doi.org/10.1016/j.mce.2016.07.037.

    Article  CAS  PubMed  Google Scholar 

  28. Louzada RA, Carvalho DP. Similarities and differences in the peripheral actions of thyroid hormones and their metabolites. Front Endocrinol (Lausanne). 2018;9:394. PMID: 30072951. https://doi.org/10.3389/fendo.2018.00394.

    Article  Google Scholar 

  29. Rurale G, Di Cicco E, Dentice M, Salvatore D, Persani L, Marelli F, Luongo C. Thyroid hormone hyposensitivity: from genotype to phenotype and back. Front Endocrinol (Lausanne). 2020;10:912. https://doi.org/10.3389/fendo.2019.00912.

    Article  Google Scholar 

  30. Dentice M, Ambrosio R, Damiano V, Sibilio A, Luongo C, Guardiola O, Yennek S, Zordan P, Minchiotti G, Colao A, Marsili A, Brunelli S, Del Vecchio L, Larsen PR, Tajbakhsh S, Salvatore D. Intracellular inactivation of thyroid hormone is a survival mechanism for muscle stem cell proliferation and lineage progression. Cell Metab. 2014;20(6):1038–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dentice M, Marsili A, Ambrosio R, Guardiola O, Sibilio A, Paik JH, Minchiotti G, DePinho RA, Fenzi G, Larsen PR, Salvatore D. The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration. J Clin Invest. 2010;120(11):4021–30. Epub 2010 Oct 11. PMID: 20978344; PMCID: PMC2964991. https://doi.org/10.1172/JCI43670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodolico C, Bonanno C, Pugliese A, Nicocia G, Benvenga S, Toscano A. Endocrine myopathies: clinical and histopathological features of the major forms. Acta Myol. 2020;39(3):130–5. https://doi.org/10.36185/2532-1900-017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sindoni A, Rodolico C, Pappalardo MA, Portaro S, Benvenga S. Hypothyroid myopathy: a peculiar clinical presentation of thyroid failure. Review of the literature. Rev Endocr Metab Disord. 2016;17(4):499–519. https://doi.org/10.1007/s11154-016-9357-0.

    Article  CAS  PubMed  Google Scholar 

  34. Amin S, Aung M, Gandhi FR, Pena Escobar JA, Gulraiz A, Malik BH. Myasthenia gravis and its association with thyroid diseases. Cureus. 2020;12(9):e10248. https://doi.org/10.7759/cureus.10248.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mishra D, Juneja M. Kocher-Debre-Semelaigne syndrome. J Pediatr Neurosci. 2014;9(3):289–90. https://doi.org/10.4103/1817-1745.147570.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Achappa B, Madi D. Hoffmann’s syndrome- a rare form of hypothyroid myopathy. J Clin Diagn Res. 2017;11(5):OL01–2. https://doi.org/10.7860/JCDR/2017/21234.9913.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Giampietro O, Clerico A, Buzzigoli G, Del Chicca MG, Boni C, Carpi A. Detection of hypothyroid myopathy by measurement of various serum muscle markers—myoglobin, creatine kinase, lactate dehydrogenase and their isoenzymes. Correlations with thyroid hormone levels (free and total) and clinical usefulness. Horm Res. 1984;19(4):232–42. https://doi.org/10.1159/000179893.

    Article  CAS  PubMed  Google Scholar 

  38. Zybek-Kocik A, Sawicka-Gutaj N, Domin R, Szczepanek-Parulska E, Krauze T, Guzik P, Ruchała M. Titin and dystrophin serum concentrations changes in patients affected by thyroid disorders. Endokrynol Pol. 2021;72(1):1–7. Epub ahead of print. https://doi.org/10.5603/EP.a2020.0083.

    Article  CAS  PubMed  Google Scholar 

  39. Modi G. Cores in hypothyroid myopathy: a clinical, histological and immunofluorescence study. J Neurol Sci. 2000;175(1):28–32. https://doi.org/10.1016/s0022-510x(00)00266-5.

    Article  CAS  PubMed  Google Scholar 

  40. Musielak MC, Chae JH. Hypothyroid-induced acute compartment syndrome in all extremities. J Surg Case Rep. 2016;2016(12):rjw215. https://doi.org/10.1093/jscr/rjw215.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Khaleeli AA, Gohil K, McPhail G, Round JM, Edwards RH. Muscle morphology and metabolism in hypothyroid myopathy: effects of treatment. J Clin Pathol. 1983;36(5):519–26. https://doi.org/10.1136/jcp.36.5.519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94(2):355–82. https://doi.org/10.1152/physrev.00030.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Czech MP, Malbon CC, Kerman K, Gitomer W, Pilch PF. Effect of thyroid status on insulin action in rat adipocytes and skeletal muscle. J Clin Invest. 1980;66(3):574–82. https://doi.org/10.1172/JCI109889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mathew P, Rawla P. Hyperthyroidism. In: StatPearls [Internet]. Treasure Island, FL: StatPearls; 2020.

    Google Scholar 

  45. McGrowder DA, Fraser YP, Gordon L, Crawford TV, Rawlins JM. Serum creatine kinase and lactate dehydrogenase activities in patients with thyroid disorders. Niger J Clin Pract. 2011;14(4):454–9. https://doi.org/10.4103/1119-3077.91755.

    Article  CAS  PubMed  Google Scholar 

  46. Iqbal QZ, Zia Z, Niazi M, Sattar SBA, Quyyumi S. Thyrotoxic muscle paralysis as a rare cause of reversible muscle weakness: a case report. Cureus. 2020;12(9):e10634. https://doi.org/10.7759/cureus.10634.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lu KC, Hsu YJ, Chiu JS, Hsu YD, Lin SH. Effects of potassium supplementation on the recovery of thyrotoxic periodic paralysis. Am J Emerg Med. 2004;22(7):544–7. https://doi.org/10.1016/j.ajem.2004.09.016.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ileana Terruzzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Terruzzi, I. (2021). Muscle Tissue in Hypothyroidism and Hyperthyroidism. In: Luzi, L. (eds) Thyroid, Obesity and Metabolism. Springer, Cham. https://doi.org/10.1007/978-3-030-80267-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80267-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80266-0

  • Online ISBN: 978-3-030-80267-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics