Skip to main content

Thyroid Dysfunction and Metabolism: Diagnosis and Follow-Up

  • Chapter
  • First Online:
Thyroid, Obesity and Metabolism

Abstract

Overweight and obesity are often associated with impaired thyroid function. Conversely, thyroid dysfunctions are associated with changes in body weight and basal metabolic rate.

Furthermore, blood TSH levels are positively correlated with the degree of overweight/obesity even in a population of subjects with euthyroidism.

Prescribing a low-calorie diet based on predictive resting energy expenditure (REE) equations may be ineffective in individuals with overweight or obesity, as it does not consider basal metabolic abnormalities caused by chronic thyroiditis, subclinical hypothyroidism, inadequate levothyroxine dosage, even in apparent conditions of euthyroidism.

The gold standard procedure for the measurement of REE in clinical practice is the indirect calorimetry (IC). A diet based on REE measured by IC is more effective in promoting weight loss than a program based on REE estimated by predictive equations, particularly in subjects with potential abnormal basal metabolic rate due to thyroid dysfunction.

Subclinical thyroid dysfunctions can affect the patient’s health. Since several studies showed a significant variation of REE related to TSH levels, an effective measurement of REE by IC, in association with immunoassays for thyroid hormones, could be useful to evaluate the possibility of a pharmacological intervention in subjects with subclinical thyroid dysfunctions.

Based on these evidences, we can assume that the precise assessment of REE by IC is fundamental in clinical dietetic practice in order to maximize the benefits of nutrition therapy, especially in subjects with potential abnormalities in basal metabolism due to thyroid dysfunction. Thus, IC should be suggested as a routine procedure in all clinical weight reduction interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levine JA. Measurement of energy expenditure. Public Health Nutr. 2005;8(7A):1123–32.

    Article  PubMed  Google Scholar 

  2. Levine JA. Nonexercise activity thermogenesis—liberating the life-force. J Intern Med. 2007;262(3):273–87.

    Article  CAS  PubMed  Google Scholar 

  3. Haugen HA, Chan LN, Li F. Indirect calorimetry: a practical guide for clinicians. Nutr Clin Pract. 2007;22(4):377e8.

    Article  Google Scholar 

  4. Lam YY, Ravussin E. Indirect calorimetry: an indispensable tool to understand and predict obesity. Eur J Clin Nutr. 2017;71(3):318–22.

    Article  CAS  PubMed  Google Scholar 

  5. Sawin C. The heritage of the thyroid: a brief history. In: Braverman LE, Cooper DS, editors. Werner & Ingbar’s the thyroid: a fundamental and clinical text. 8th ed. Philadelphia, PA: JB Lippincott; 2000. p. 1–4.

    Google Scholar 

  6. Walsberg GE, Hoffman TC. Direct calorimetry reveals large errors in respirometric estimates of energy expenditure. J Exp Biol. 2005;208:1035–183.

    Article  PubMed  Google Scholar 

  7. Westerterp KR. Doubly labelled water assessment of energy expenditure: principle, practice, and promise. Eur J Appl Physiol. 2017;117(7):1277–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. SACN. Scientific advisory committee on nutrition. Dietary recommendations for energy. London: TSO; 2011.

    Google Scholar 

  9. EFSA, European Food Safety Authority. Panel on dietetic products, nutrition and allergies. scientific opinion on dietary reference values for energy. EFSA J. 2013;11:3005.

    Article  Google Scholar 

  10. Plasqui G. Smart approaches for assessing free-living energy expenditure following identification of types of physical activity. Obes Rev. 2017;18(Suppl 1):50–5.

    Article  PubMed  Google Scholar 

  11. Jeran S, Steinbrecher A, Pischon T. Prediction of activity-related energy expenditure using accelerometer-derived physical activity under free-living conditions: a systematic review. Int J Obes (Lond). 2016;40(8):1187–97.

    Article  CAS  Google Scholar 

  12. Ng M, Fleming T, Robinson M, et al. Global, regional and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2014;384:766–81.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet (London, England). 2011;378:815–25.

    Article  Google Scholar 

  14. Garvey WT, Mechanick JI, Brett EM, et al. American Association of Clinical Endocrinologists and American College of Endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Pract. 2016;22(Suppl 3):1–203.

    Article  PubMed  Google Scholar 

  15. Madden AM, Morgan MY. Resting energy expenditure should be measured in patients with cirrhosis, not predicted. Hepatology. 1999;30:655–64.

    Article  CAS  PubMed  Google Scholar 

  16. Savard JF, Faisy C, Lerolle N, Guerot E, Diehl JL, Fagon JY. Validation of a predictive method for an accurate assessment of resting energy expenditure in medical mechanically ventilated patients. Crit Care Med. 2008;36(4):1175–83.

    Article  PubMed  Google Scholar 

  17. Massarini S, Ferrulli A, Ambrogi F, Macrì C, Terruzzi I, Benedini S, Luzi L. Routine resting energy expenditure measurment increases effectiveness of dietary intervention in obesity. Acta Diabetol. 2018;55:75–85.

    Article  PubMed  Google Scholar 

  18. Singer P, Anbar R, Cohen J, et al. The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med. 2011;37:601–9.

    Article  PubMed  Google Scholar 

  19. Forhead AJ, Fowden AL. Thyroid hormones in fetal growth and prepartum maturation. J Endocrinol. 2014;221(3):R87–R103.

    Article  CAS  PubMed  Google Scholar 

  20. Oetting A, Yen PM. New insights into thyroid hormone action. Best Pract Res Clin Endocrinol Metab. 2007;21:193–208.

    Article  CAS  PubMed  Google Scholar 

  21. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94(2):355–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fox CS, Pencina MJ, D’Agostino RB, Murabito JM, Seely EW, Pearce EN, Vasan RS. Relations of thyroid function to body weight: cross-sectional and longitudinal observations in a community-based sample. Arch Intern Med. 2008;168:587–92.

    Article  PubMed  Google Scholar 

  23. Iwen KA, Schroder E, Brabant G. Thyroid hormone and the metabolic syndrome. Eur Thyroid J. 2013;2:83–92.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Knudsen N, Laurberg P, Rasmussen LB, Bulow I, Perrild H, Ovesen L, Jorgensen T. Small differences in thyroid function may be important for body mass index and the occurrence of obesity in the population. J Clin Endocrinol Metab. 2005;90:4019–24.

    Article  CAS  PubMed  Google Scholar 

  25. Magnus-Levy A. Ueber den respiratorischen Gaswechsel unter dem Einfluss der Thyroidea sowie unter verschiedenen pathologischen Zuständen. Berl. klin. Wschr.; 1895. p. 650.

    Google Scholar 

  26. Goglia F. The effects of 3,5-diiodothyronine on energy balance. Front Physiol. 2014;5:528.

    PubMed  Google Scholar 

  27. Kim MS, Small CJ, Stanley SA, Morgan DG, Seal LJ, Kong WM, Edwards CM, Abusnana S, Sunter D, Ghatei MA, Bloom SR. The central melanocortin system affects the hypothalamo-pituitary thyroid axis and may mediate the effects of leptin. J Clin Invest. 2000;105:1005–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weitzel JM, Iwen KA. Coordination of mitochondrial biogenesis by thyroid hormone. Mol Cell Endocrinol. 2011;342(1–2):1–7.

    Article  CAS  PubMed  Google Scholar 

  29. Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM. The c-erb-A gene encodes a thyroid hormone receptor. Nature. 1986;324(6098):641–6.

    Article  CAS  PubMed  Google Scholar 

  30. Golozoubova V, Gullberg H, Matthias A, Cannon B, Vennstrom B, Nedergaard J. Depressed thermogenesis but competent brown adipose tissue recruitment in mice devoid of all hormone-binding thyroid hormone receptors. Mol Endocrinol. 2004;18(2):384–401.

    Article  CAS  PubMed  Google Scholar 

  31. Davis PJ, Leonard JL, Davis FB. Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol. 2008;29(2):211–8.

    Article  CAS  PubMed  Google Scholar 

  32. Bassett JH, Harvey CB, Williams GR. Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions. Mol Cell Endocrinol. 2003;213:1–11.

    Article  CAS  PubMed  Google Scholar 

  33. Yehuda-Shnaidman E, Kalderon B, Bar-Tana J. Thyroid hormone, thyromimetics, and metabolic efficiency. Endocr Rev. 2014;35:35–58.

    Article  CAS  PubMed  Google Scholar 

  34. Vaitkus JA, Farrar JS, Celi FS. Thyroid hormone mediated modulation of energy expenditure. Int J Mol Sci. 2015;16(7):16158–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Clark D, Lee D, Rognstad R, Katz J. Futile cycles in isolated perfused rat liver and in isolated rat liver parenchymal cells. Biochem Biophys Res Commun. 1975;67(1):212–9.

    Article  CAS  PubMed  Google Scholar 

  36. Shulman GI, Ladenson PW, Wolfe MH, Ridgway EC, Wolfe RR. Substrate cycling between gluconeogenesis and glycolysis in euthyroid, hypothyroid, and hyperthyroid man. J Clin Invest. 1985;76(2):757–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Muller MJ, Seitz HJ. Thyroid hormone action on intermediary metabolism. Part I: respiration, thermogenesis and carbohydrate metabolism. Klin Wochenschr. 1984;62(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  38. Huang MT, Lardy HA. Effects of thyroid states on the Cori cycle, glucose–alanine cycle, and futile cycling of glucose metabolism in rats. Arch Biochem Biophys. 1981;209(1):41–51.

    Article  CAS  PubMed  Google Scholar 

  39. Okajima F, Ui M. Metabolism of glucose in hyper- and hypothyroid rats in vivo. Glucose-turnover values and futile-cycle activities obtained with 14C- and 3H-labelled glucose. Biochem J. 1979;182(2):565–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Freake HC, Oppenheimer JH. Thermogenesis and thyroid function. Annu Rev Nutr. 1995;15:263–91.

    Article  CAS  PubMed  Google Scholar 

  41. Blennemann B, Leahy P, Kim TS, Freake HC. Tissue-specific regulation of lipogenic mRNAs by thyroid hormone. Mol Cell Endocrinol. 1995;110(1–2):1–8.

    Article  CAS  PubMed  Google Scholar 

  42. Lombardi A, Beneduce L, Moreno M, et al. 3,5-Diiodo-L-thyronine regulates glucose-6-phosphate dehydrogenase activity in the rat. Endocrinology. 2000;141(5):1729–34.

    Article  CAS  PubMed  Google Scholar 

  43. Hoch FL. Lipids and thyroid hormones. Prog Lipid Res. 1988;27(3):199–270.

    Article  CAS  PubMed  Google Scholar 

  44. Stakkestad JA, Bremer J. The outer carnitine palmitoyltransferase and regulation of fatty acid metabolism in rat liver in different thyroid states. Biochim Biophys Acta. 1983;750(2):244–52.

    Article  CAS  PubMed  Google Scholar 

  45. Oppenheimer JH, Schwartz HL, Lane JT, Thompson MP. Functional relationship of thyroid hormone-induced lipogenesis, lipolysis, and thermogenesis in the rat. J Clin Invest. 1991;87(1):125–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arner P, Wennlund A, Ostman J. Regulation of lipolysis by human adipose tissue in hyperthyroidism. J Clin Endocrinol Metab. 1979;48(3):415–9.

    Article  CAS  PubMed  Google Scholar 

  47. Malbon CC, Moreno FJ, Cabelli RJ, Fain JN. Fat cell adenylate cyclase and adrenergic receptors in altered thyroid states. J Biol Chem. 1978;253(3):671–8.

    Article  CAS  PubMed  Google Scholar 

  48. Hagenfeldt L, Wennlung A, Felig P, Wahren J. Turnover and splanchnic metabolism of free fatty acids in hyperthyroid patients. J Clin Invest. 1981;67(6):1672–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tata JR, Widnell CC. Ribonucleic acid synthesis during the early action of thyroid hormones. Biochem J. 1966;98(2):604–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brown JG, Bates PC, Holliday MA, Millward DJ. Thyroid hormones and muscle protein turnover. The effect of thyroid-hormone deficiency and replacement in thryoidectomized and hypophysectomized rats. Biochem J. 1981;194(3):771–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gick GG, Ismail-Beigi F, Edelman IS. Thyroidal regulation of rat renal and hepatic Na,K ATPase gene expression. J Biol Chem. 1988;263(32):16610–8.

    Article  CAS  PubMed  Google Scholar 

  52. Izmail-Beigi F, Edelman IS. Mechanism of thyroid calorigenesis: role of active sodium transport. Proc Natl Acad Sci U S A. 1970;67(2):1071–8.

    Article  CAS  PubMed  Google Scholar 

  53. Lei J, Nowbar S, Mariash CN, Ingbar DH. Thyroid hormone stimulates Na-K-ATPase activity and its plasma membrane insertion in rat alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2003;285(3):L762–72.

    Article  CAS  PubMed  Google Scholar 

  54. Lei J, Mariash CN, Ingbar DH. 3,3,5-Triiodo-L-thyronine up-regulation of Na,K-ATPase activity and cell surface expression in alveolar epithelial cells is Src kinase- and phosphoinositide 3-kinase-dependent. J Biol Chem. 2004;279(46):47589–600.

    Article  CAS  PubMed  Google Scholar 

  55. Haber RS, Loeb JN. Effect of 3,5,3-triiodothyronine treatment on potassium efflux from isolated rat diaphragm: role of increased permeability in the thermogenic response. Endocrinology. 1982;111(4):1217–23.

    Article  CAS  PubMed  Google Scholar 

  56. Simonides WS, Thelen MH, van der Linden CG, Muller A, van Hardeveld C. Mechanism of thyroid-hormone regulated expression of the SERCA genes in skeletal muscle: implications for thermogenesis. Biosci Rep. 2001;21(2):139–54.

    Article  CAS  PubMed  Google Scholar 

  57. Yehuda-Shnaidman E, Kalderon B, Azazmeh N, Bar-Tana J. Gating of the mitochondrial permeability transition pore by thyroid hormone. FASEB J. 2010;24(1):93–104.

    Article  PubMed  CAS  Google Scholar 

  58. Jiang M, Xu A, Tokmakejian S, Narayanan N. Thyroid hormone-induced overexpression of functional ryanodine receptors in the rabbit heart. Am J Physiol Heart Circ Physiol. 2000;278(5):H1429–38.

    Article  CAS  PubMed  Google Scholar 

  59. Sestoft L. Metabolic aspects of the calorigenic effect of thyroid hormone in mammals. Clin Endocrinol (Oxf). 1980;13(5):489–506.

    Article  CAS  Google Scholar 

  60. Divakaruni AS, Brand MD. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda). 2011;26(3):192–205.

    CAS  Google Scholar 

  61. Cannon B, Hedin A, Nedergaard J. Exclusive occurrence of thermogenin antigen in brown adipose tissue. FEBS Lett. 1982;150:129–32.

    Article  CAS  PubMed  Google Scholar 

  62. Larkin S, Mull E, Miao W, Pittner R, Albrandt K, Moore C, Young A, Denaro M, Beaumont K. Regulation of the third member of the uncoupling protein family, UCP3, by cold and thyroid hormone. Biochem Biophys Res Commun. 1997;240:222–7.

    Article  CAS  PubMed  Google Scholar 

  63. Masaki T, Yoshimatsu H, Kakuma T, Hidaka S, Kurokawa M, Sakata T. Enhanced expression of uncoupling protein 2 gene in rat white adipose tissue and skeletal muscle following chronic treatment with thyroid hormone. FEBS Lett. 1997;418:323–6.

    Article  CAS  PubMed  Google Scholar 

  64. Robinson AJ, Overy C, Kunji ER. The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc Natl Acad Sci U S A. 2008;105(46):17766–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Barbe P, Larrouy D, Boulanger C, et al. Triiodothyronine mediated up-regulation of UCP2 and UCP3 mRNA expression in human skeletal muscle without coordinated induction of mitochondrial respiratory chain genes. FASEB J. 2001;15(1):13–5.

    Article  CAS  PubMed  Google Scholar 

  66. Silva JE, Bianco SD. Thyroid-adrenergic interactions: physiological and clinical implications. Thyroid. 2008;18(2):157–65.

    Article  CAS  PubMed  Google Scholar 

  67. Jiang W, Miyamoto T, Kakizawa T, et al. Expression of thyroid hormone receptor in 3T3–L1 adipocytes; triiodothyronine increases the expression of lipogenic enzyme and triglyceride accumulation. J Endocrinol. 2004;182(2):295–302.

    Article  CAS  PubMed  Google Scholar 

  68. Satterfield MC, Wu G. Brown adipose tissue growth and development: significance and nutritional regulation. Front Biosci (Landmark Ed). 2011;16:1589–608.

    Article  CAS  Google Scholar 

  69. Tseng YH, Cypess AM, Kahn CR. Cellular bioenergetics as a target for obesity therapy. Nat Rev Drug Discov. 2010;9(6):465–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Affourtit C, Crichton PG, Parker N, Brand MD. Novel uncoupling proteins. Novartis Found Symp. 2007;287:70–80; discussion 80–91.

    CAS  PubMed  Google Scholar 

  71. Field J, Belding HS, Martin AW. An analysis of the relation between basal metabolism and summated tissue respiration in the rat. The post-pubertal albino rat. J Cell Comp Physiol. 1939;14(2):143–57.

    Article  CAS  Google Scholar 

  72. Weitzel JM, Iwen KA, Seitz HJ. Regulation of mitochondrial biogenesis by thyroid hormone. Exp Physiol. 2003;88:121–8.

    Article  CAS  PubMed  Google Scholar 

  73. Psarra AM, Solakidi S, Sekeris CE. The mitochondrion as a primary site of action of steroid and thyroid hormones: presence and action of steroid and thyroid hormone receptors in mitochondria of animal cells. Mol Cell Endocrinol. 2006;246:21–33.

    Article  CAS  PubMed  Google Scholar 

  74. Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P. Metabolic adaptations through the PGC-1α and sirt1 pathways. FEBS Lett. 2008;582:46–53.

    Article  CAS  PubMed  Google Scholar 

  75. Taylor PN, Albrech D, Scholz A, Gutierrez-Buey G, Lazarus JH, Dayan CM, Okosieme OE. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol. 2018;14:301–16.

    Article  PubMed  Google Scholar 

  76. Garmendia Madariaga A, Santos Palacios S, Guillen-Grima F, Galofre JC. The incidence and prevalence of thyroid dysfunction in Europe: a meta analysis. J Clin Endocrinol Metab. 2014;99:923–31.

    Article  PubMed  CAS  Google Scholar 

  77. Hollowell JG, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87:489–99.

    Article  CAS  PubMed  Google Scholar 

  78. Chaker L, Bianco AC, Jonklaas J, Peeters RP. Hypothyroidism. Lancet. 2017;390:1550–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Asvold BO, Vatten LJ, Bjoro T. Changes in the prevalence of hypothyroidism: the HUNT study in Norway. Eur J Endocrinol. 2013;169:613–20.

    Article  CAS  PubMed  Google Scholar 

  80. McGrogan A, Seaman HE, Wright JW, de Vries CS. The incidence of autoimmune thyroid disease: a systematic review of the literature. Clin Endocrinol (Oxf). 2008;69:687–96.

    Article  Google Scholar 

  81. Canaris GJ, Manowitz NR, Mayor G, Ridgway EC. The Colorado thyroid disease prevalence study. Arch Intern Med. 2000;160:526–34.

    Article  CAS  PubMed  Google Scholar 

  82. Anderson AB. Hyperthyroidism: relation of the basal metabolism to the clinical signs. BMJ. 1941;2(4203):117–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Taylor PN, Razvi S, Pearce SH, Dayan CM. Clinical review: a review of the clinical consequences of variation in thyroid function within the reference range. J Clin Endocrinol Metab. 2013;98(9):3562–71.

    Article  CAS  PubMed  Google Scholar 

  84. Peterson SJ, McAninch EA, Bianco AC. Is a normal TSH synonymous with “euthyroidism” in levo-thyroxine monotherapy? J Clin Endocrinol Metab. 2016;101(12):4964–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Samuels MH, Kolobova I, Smeraglio A, Peters D, Purnell JQ, Schuff KG. Effects of levothyroxine replacement or suppressive therapy on energy expenditure and body composition. Thyroid. 2016;26(3):347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Al-Adsani H, Hoffer LJ, Silva JE. Resting energy expenditure is sensitive to small dose changes in patients on chronic thyroid hormone replacement. J Clin Endocrinol Metab. 1997;82(4):1118–25.

    CAS  PubMed  Google Scholar 

  87. Samuels MH, Kolobova I, Niederhausen M, Purnell JQ, Schuff KG. Effects of altering levothyroxine dose on energy expenditure and body composition in subjects treated with LT4. J Clin Endocrinol Metab. 2018;103(11):4163–75.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Massarini S, Ferrulli A, Macrì C, Luzi L. Utilità della calorimetria indiretta nel trattamento del sovrappeso e dell’obesità associate a ipotiroidismo. Accepted as poster presentation, SIE; 2017.

    Google Scholar 

  89. Surks MI, Ortiz E, Daniels GH, Sawin CT, Col NF, Cobin RH, et al. Subclinical thyroid disease scientific review and guidelines for diagnosis and management. JAMA. 2004;291(2):228–38.

    Article  CAS  PubMed  Google Scholar 

  90. Cooper D, Biondi B. Subclinical thyroid disease. Lancet. 2012;9821:1076.

    Google Scholar 

  91. Sawin CT, Castelli WP, Hershman JM, et al. The aging thyroid: thyroid deficiency in the Framingham study. Arch Intern Med. 1985;145:1386–8.

    Article  CAS  PubMed  Google Scholar 

  92. Parle JV, Franklyn JA, Cross KW, Jones SC, Sheppard MC. Prevalence and follow-up of abnormal thyrotrophin (TSH) concentrations in the elderly in the United Kingdom. Clin Endocrinol (Oxf). 1991;34:77–83.

    Article  CAS  Google Scholar 

  93. Peeters RP. Subclinical hypothyroidism. N Engl J Med. 2017;376(26):2556–65.

    Article  PubMed  Google Scholar 

  94. Parle JV, Franklyn JA, Cross KW, Jones SR, Sheppard MC. Thyroxine prescription in the community: serum thyroid stimulating hormone level assays as an indicator of undertreatment or overtreatment. Br J Gen Pract. 1993;43:107–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Sawin CT, Geller A, Wolf PA, Belanger AJ, Baker E, Bachrach P, Wilson PW, Benjamin EJ, D’Agostino RB. Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. N Engl J Med. 1994;331:1249–52.

    Article  CAS  PubMed  Google Scholar 

  96. Pearce S, Brabant G, Duntas LH, Monzani F, Peeters RP, Razvi S, et al. 2013 ETA guideline: management of subclinical hypothyroidism. Eur Thyroid J. 2013;2:215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cooper DS, Halpern R, Wood LC, Levin AA, Ridgway EC. L-thyroxine therapy in subclinical hypothyroidism: a double-blind, placebo-controlled trial. Ann Intern Med. 1984;101:18–24.

    Article  CAS  PubMed  Google Scholar 

  98. Rodondi N, den Elzen WP, Bauer DC, et al. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA. 2010;304:1365–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gencer B, Collet TH, Virgini V, et al. Subclinical thyroid dysfunction and the risk of heart failure events: an individual participant data analysis from 6 prospective cohorts. Circulation. 2012;126:1040–9.

    Article  CAS  PubMed  Google Scholar 

  100. Chaker L, Baumgartner C, den Elzen WP, et al. Subclinical hypothyroidism and the risk of stroke events and fatal stroke: an individual participant data analysis. J Clin Endocrinol Metab. 2015;100:2181–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Biondi B, Cooper DS. The clinical significance of subclinical thyroid dysfunction. Endocr Rev. 2008;29:76–131.

    Article  CAS  PubMed  Google Scholar 

  102. Stott DJ, Rodondi N, Kearney PM, et al. Thyroid hormone therapy for older adults with subclinical hypothyroidism. N Engl J Med. 2017;376:2534–44.

    Article  CAS  PubMed  Google Scholar 

  103. Meier C, Staub JJ, Roth CB, et al. TSH controlled L-thyroxine therapy reduces cholesterol levels and clinical symptoms in subclinical hypothyroidism: a double blind, placebo-controlled trial (Basel thyroid study). J Clin Endocrinol Metab. 2001;86:4860–6.

    Article  CAS  PubMed  Google Scholar 

  104. Razvi S, Ingoe L, Keeka G, Oates C, McMillan C, Weaver JU. The beneficial effect of L-thyroxine on cardiovascular risk factors, endothelial function, and quality of life in subclinical hypothyroidism: randomized, crossover trial. J Clin Endocrinol Metab. 2007;92:1715–23.

    Article  CAS  PubMed  Google Scholar 

  105. Duntas LH. Thyroid disease and lipids. Thyroid. 2002;12:287–93.

    Article  CAS  PubMed  Google Scholar 

  106. Flynn RW, Macdonald TM, Jung RT, Morris AD, Leese GP. Mortality and vascular outcomes in patients treated for thyroid dysfunction. J Clin Endocrinol Metab. 2006;91:2159–64.

    Article  CAS  PubMed  Google Scholar 

  107. Massarini S, Ferrulli A, Luzi L. Metabolic signature of hypothyroidism indicating higher cardiovascular risk. Accepted as poster, ECE; 2018.

    Google Scholar 

  108. Biondi B, Palmieri EA, Fazio S, et al. Endogenous subclinical hyperthyroidism affects quality of life and cardiac morphology and function in young and middle-aged patients. J Clin Endocrinol Metab. 2000;85(12):4701–5.

    CAS  PubMed  Google Scholar 

  109. Selmer C, Olesen JB, Hansen ML, et al. Subclinical and overt thyroid dysfunction and risk of all-cause mortality and cardiovascular events: a large population study. J Clin Endocrinol Metab. 2014;99(7):2372–82.

    Article  CAS  PubMed  Google Scholar 

  110. Uzzan B, Campos J, Cucherat M, Nony P, Boissel JP, Perret GY. Effects on bone mass of long term treatment with thyroid hormones: a meta-analysis. J Clin Endocrinol Metab. 1996;81(12):4278–89.

    CAS  PubMed  Google Scholar 

  111. Ross DS, Burch HB, Cooper DS, et al. 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid. 2016;26(10):1343–421.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livio Luzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luzi, L., Massarini, S., Terruzzi, I., Ferrulli, A., Cusini, C. (2021). Thyroid Dysfunction and Metabolism: Diagnosis and Follow-Up. In: Luzi, L. (eds) Thyroid, Obesity and Metabolism. Springer, Cham. https://doi.org/10.1007/978-3-030-80267-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80267-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80266-0

  • Online ISBN: 978-3-030-80267-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics