Skip to main content

Thyroid and Obesity

  • Chapter
  • First Online:
Thyroid, Obesity and Metabolism

Abstract

This chapter examines some inter-operative aspects of thyroid physiology and adipose tissue. There are also observational reports confirming (or not) the link between autoimmune thyroid disease, thyroid cancer, thyroid physiopathology, and obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://www.oecd.org/els/health-systems/Obesity-Update-2017.pdf

  2. https://www.oecd-ilibrary.org/docserver/4dd50c09-en.pdf?expires=1620799361&id=id&accname=guest&checksum=D3E8AF9715A589511190263E7A85C1F8

  3. https://www.epicentro.iss.it/okkioallasalute/indagine-2019-dati

  4. Peter L, et al. Thyroid function and obesity. Eur Thyroid J. 2012;1:159–67. https://doi.org/10.1159/000342994.

    Article  CAS  Google Scholar 

  5. Duntas LH, Biondi B. The interconnections between obesity, thyroid function, and autoimmunity: the multifold role of leptin. Thyroid. 2013;23(6):646–53.

    Article  CAS  Google Scholar 

  6. Amouzegar A, et al. Abdominal obesity phenotypes and incidence of thyroid autoimmunity: a 9-year follow-up. Endocr Res. 2020;45(3):202–9. https://doi.org/10.1080/07435800.2020.1749847.

    Article  CAS  PubMed  Google Scholar 

  7. Rotondi M, et al. Raised serum TSH levels in patients with soft obesity: is it enough to diagnose subclinical hypothyroidism? Eur J Endocrinol. 2009;160:403–8. https://doi.org/10.1530/EJE-08-0734.

    Article  CAS  PubMed  Google Scholar 

  8. Stichel H, et al. Thyroid function and obesity in children and adolescents. Horm Res. 2000;54:14–9. https://doi.org/10.1159/000063431.

    Article  CAS  PubMed  Google Scholar 

  9. Song R-H, et al. The impact of obesity on thyroid autoimmunity and dysfunction: a systematic review and meta-analysis. Front Immunol. 2019;10:2349.

    Article  CAS  Google Scholar 

  10. Fierabracci P, et al. Prevalence of endocrine diseases in morbidly obese patients scheduled for bariatric surgery: beyond diabetes. Obes Surg. 2011;21:2154–60. https://doi.org/10.1007/s11695-010-0297-6.

    Article  Google Scholar 

  11. Marzullo P, et al. Investigations of thyroid hormones and antibodies in obesity: leptin levels are associated with thyroid autoimmunity independent of bioanthropometric, hormonal, and weight-related determinants. J Clin Endocrinol Metab. 2010;95:3965–72. https://doi.org/10.1210/jc.2009-2798.

    Article  CAS  PubMed  Google Scholar 

  12. Wu Y, et al. The correlation between metabolic disorders and tpoab/tgab: a cross-sectional population-based study. Endocr Pract. 2020;26(8):869–82.

    Article  Google Scholar 

  13. Steele CB, Thomas CC, Henley SJ, Massetti GM, Galuska DA, Agurs-Collins T, Puckett M, Richardson LC. Vital signs: trends in incidence of cancers associated with overweight and obesity—United States, 2005–2014. MMWR Morb Mortal Wkly Rep. 2017;66(39):1052–8. https://doi.org/10.15585/mmwr.mm6639e1.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kitahara CM, Pfeiffer RM, Sosa JA, Shiels MS. Impact of overweight and obesity on US papillary thyroid cancer incidence trends (1995–2015). J Natl Cancer Inst. 2020;112(8):djz202. https://doi.org/10.1093/jnci/djz202.

    Article  Google Scholar 

  15. Fussey JM, Beaumont RN, Wood AR, et al. Does obesity cause thyroid cancer? a mendelian randomization study. J Clin Endocrinol Metab. 2020;105:e2398–407.

    Article  Google Scholar 

  16. Han JM, et al. Obesity is a risk factor for thyroid cancer in a large, ultrasonographically screened population. Eur J Endocrinol. 2013;168:879–86. https://doi.org/10.1530/EJE-13-0065.

    Article  CAS  PubMed  Google Scholar 

  17. Kim HJ, et al. Associations between body mass index and clinico-pathological characteristics of papillary thyroid cancer. Clin Endocrinol (Oxf). 2013;78(1):134–40. https://doi.org/10.1111/j.1365-2265.2012.04506.x.

    Article  Google Scholar 

  18. Chen J, Cao H, Lian M, Fang J. Five genes influenced by obesity may contribute to the development of thyroid cancer through the regulation of insulin levels. Peer J. 2020;8:e9302. https://doi.org/10.7717/peerj.9302.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rahman ST, Pandeya N, Neale RE, Mcleod DSA, Bain CJ, Baade PD, et al. Obesity is associated with BRAFV600E-mutated thyroid cancer. Thyroid. 2020;30(10):1518–27. https://doi.org/10.1089/thy.2019.0654.

    Article  CAS  PubMed  Google Scholar 

  20. Choi JS, et al. The influence of body mass index on the diagnostic performance of pre-operative staging ultrasound in papillary thyroid carcinoma. Clin Endocrinol (Oxf). 2015;83(4):550–5. https://doi.org/10.1111/cen.12638.

    Article  Google Scholar 

  21. de Siqueira RA, et al. Thyroid nodules in severely obese patients: frequency and risk of malignancy on ultrasonography. Endocr Res. 2019;1:1–8. https://doi.org/10.1080/07435800.2019.1625056.

    Article  CAS  Google Scholar 

  22. Mario R, et al. Raised serum TSH levels in patients with morbid obesity: is it enough to diagnose subclinical hypothyroidism? Eur J Endocrinol. 2009;160:403–8. https://doi.org/10.1530/EJE-08-0734.

    Article  CAS  Google Scholar 

  23. Reinehr T, et al. Thyroid hormones before and after weight loss in obesity. Arch Dis Child. 2002;87:320–3. https://doi.org/10.1136/adc.87.4.320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ehrenkranz J, et al. Circadian and circannual rhythms in thyroid hormones: determining the TSH and free T4 reference intervals based upon time of day, age, and sex. Thyroid. 2015;25(8):954–61. https://doi.org/10.1089/thy.2014.0589.

    Article  CAS  PubMed  Google Scholar 

  25. Yoshihara A, et al. Seasonal changes in serum thyrotropin concentrations observed from big data obtained during six consecutive years from 2010 to 2015 at a single Hospital in Japan. Thyroid. 2018;28(4):429–36. https://doi.org/10.1089/thy.2017.0600.

    Article  CAS  PubMed  Google Scholar 

  26. Peter L, et al. The Danish investigation on iodine intake and thyroid disease, DanThyr: status and perspectives. Eur J Endocrinol. 2006;155:219–28. https://doi.org/10.1530/eje.1.02210.

    Article  CAS  Google Scholar 

  27. Nyrnes A, et al. Serum TSH is positively associated with BMI. Int J Obes (Lond). 2006;30:100–5. https://doi.org/10.1038/sj.ijo.0803112.

    Article  CAS  Google Scholar 

  28. Kitahara CM, et al. Body fatness and markers of thyroid function among U.S. men and women. PLoS One. 2012;7(4):e34979. https://doi.org/10.1371/journal.pone.0034979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu S, et al. Role of extrathyroidal TSHR expression in adipocyte differentiation and its association with obesity. Lipids Health Dis. 2012;11:17. https://doi.org/10.1186/1476-511X-11-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Draman MS, et al. The role of thyrotropin receptor activation in adipogenesis and modulation of fat phenotype. Front Endocrinol. 2017;8:83. https://doi.org/10.3389/fendo.2017.00083.

    Article  Google Scholar 

  31. Juiz-Valiña P, et al. Effect of weight loss after bariatric surgery on thyroid-stimulating hormone levels in euthyroid patients with morbid obesity. Nutrients. 2019;11:1121. https://doi.org/10.3390/nu11051121.

    Article  CAS  PubMed Central  Google Scholar 

  32. Guan B, et al. Effect of bariatric surgery on thyroid function in obese patients: a systematic review and meta-analysis. Obes Surg. 2017;27:3292–305. https://doi.org/10.1007/s11695-017-2965-2.

    Article  PubMed  Google Scholar 

  33. Zhang H, et al. Effect of laparoscopic roux-en-Y gastric bypass surgery on thyroid hormone levels in Chinese patients, could it be a risk for thyroid nodules? Obes Surg. 2017;27:2619–27. https://doi.org/10.1007/s11695-017-2684-8.

    Article  PubMed  Google Scholar 

  34. Gianluca I, et al. Relationship of thyroid function with body mass index, leptin, insulin sensitivity and adiponectin in euthyroid obese women. Clin Endocrinol (Oxf). 2005;62(4):487–91. https://doi.org/10.1111/j.1365-2265.2005.02247.x.

    Article  CAS  Google Scholar 

  35. Carlo C, et al. Morbid obesity in women is associated to a lower prevalence of thyroid nodules. Obes Surg. 2012;22:460–4. https://doi.org/10.1007/s11695-011-0410-5.

    Article  Google Scholar 

  36. Spadafranca A, et al. Relationship between thyroid hormones, resting energy expenditure and cardiometabolic risk factors in euthyroid subjects. Clin Nutr. 2015;34(4):674–8. https://doi.org/10.1016/j.clnu.2014.07.014.

    Article  CAS  PubMed  Google Scholar 

  37. Kim JM, et al. The relationship between thyroid function and different obesity phenotypes in Korean euthyroid adults. Diabetes Metab J. 2019;43(6):867–78. https://doi.org/10.4093/dmj.2018.0130.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kim MT, et al. Changes in body compositions and basal metabolic rates during treatment of Graves’ disease. Int J Endocrinol. 2018;2018:9863050. https://doi.org/10.1155/2018/9863050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. de la Rosa RE, et al. A longitudinal study of changes in body mass index and total body composition after radioiodine treatment for thyrotoxicosis. Thyroid. 1997;7(3):401–5. https://doi.org/10.1089/thy.1997.7.401.

    Article  PubMed  Google Scholar 

  40. Lönn L, et al. Body weight and body composition changes after treatment of hyperthyroidism. J Clin Endocrinol Metab. 1998;83:4269–73. https://doi.org/10.1210/jcem.83.12.5338.

    Article  PubMed  Google Scholar 

  41. Mariantonella T, et al. Subclinical hypothyroidism in obese patients: relation to resting energy expenditure, serum leptin, body composition, and lipid profile. Obes Res. 2001;9(3):197–201.

    Google Scholar 

  42. Marzullo P, et al. The relationship between resting energy expenditure and thyroid hormones in response to short-term weight loss in severe obesity. PLoS One. 2018;13:e0205293. https://doi.org/10.1371/journal.pone.0205293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Samuels MH, et al. Effects of levothyroxine replacement or suppressive therapy on energy expenditure and body composition. Thyroid. 2016;26:347–55. https://doi.org/10.1089/thy.2015.0345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Josh W, et al. Do patients gain weight after thyroidectomy for thyroid cancer? Thyroid. 2011;21(12):1339–42. https://doi.org/10.1089/thy.2010.0393.

    Article  CAS  Google Scholar 

  45. Karmisholt J, et al. Weight loss after therapy of hypothyroidism is mainly caused by excretion of excess body water associated with myxoedema. J Clin Endocrinol Metab. 2011;96(1):E99–E103. https://doi.org/10.1210/jc.2010-1521.

    Article  CAS  PubMed  Google Scholar 

  46. Gabrilove JL, et al. The histogenesis of myxedema. J Clin Endocrinol Metab. 1957;17:925–32. https://doi.org/10.1210/jcem-17-8-925.

    Article  CAS  PubMed  Google Scholar 

  47. Celi FS, Zemskova M, Linderman JD, Smith S, Drinkard B, Sachdev V, et al. Metabolic effects of liothyronine therapy in hypothyroidism: a randomized, double-blind, crossover trial of liothyronine versus levothyroxine. J Clin Endocrinol Metab. 2011;96(11):3466–74. https://doi.org/10.1210/jc.2011-1329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jonklaas J, et al. Guidelines for the treatment of hypothyroidism: prepared by the American Thyroid Association task force on thyroid hormone replacement. Thyroid. 2014;24:1670–751. https://doi.org/10.1089/thy.2014.0028.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pearce SHS, et al. 2013 ETA guideline: management of subclinical hypothyroidism. Eur Thyroid J. 2013;2:215–28. https://doi.org/10.1159/000356507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cannon B, et al. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277–359.

    Article  CAS  Google Scholar 

  51. de Jesus LA, et al. The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J Clin Invest. 2001;108(9):1379–85. https://doi.org/10.1172/JCI200113803.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lindsey RC, et al. Thyroid hormone acting via TRβ induces expression of browning genes in mouse bone marrow adipose tissue. Endocrine. 2017;56:109–20. https://doi.org/10.1007/s12020-017-1265-x.

    Article  CAS  PubMed  Google Scholar 

  53. Yau WW, et al. Thyroid hormone (T3) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy. 2019;15:131–50. https://doi.org/10.1080/15548627.2018.1511263.

    Article  CAS  PubMed  Google Scholar 

  54. Lee J-Y, Takahashi N, Yasubuchi M, Kim Y-I, Hashizaki H, Kim M-J, et al. Triiodothyronine induces UCP-1 expression and mitochondrial biogenesis in human adipocytes. Am J Physiol Cell Physiol. 2012;302:C463–72. https://doi.org/10.1152/ajpcell.00010.2011.

    Article  CAS  PubMed  Google Scholar 

  55. Silva JE, et al. Adrenergic activation of triiodothyronine production in brown adipose tissue. Nature. 1983;305:712–3.

    Article  CAS  Google Scholar 

  56. Rehnmark S, et al. Brown adipocytes differentiated in vitro can express the gene for the uncoupling protein thermogenin: effects of hypothyroidism and norepinephrine. Exp Cell Res. 1989;182(1):75–83. https://doi.org/10.1016/0014-4827(89)90280-2.

    Article  CAS  PubMed  Google Scholar 

  57. Lin JZ, et al. Pharmacological activation of thyroid hormone receptors elicits a functional conversion of white to Brown fat. Cell Rep. 2015;13:1528–37. https://doi.org/10.1016/j.celrep.2015.10.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gong D-W, et al. Uncoupling Protein-3 is a mediator of thermogenesis regulated by thyroid hormone, β3-adrenergic agonists, and leptin. J Biol Chem. 1997;272:24129–32. https://doi.org/10.1074/jbc.272.39.24129.

    Article  CAS  PubMed  Google Scholar 

  59. Pohl EE, et al. Important trends in UCP3 investigation. Front Physiol. 2019;10:470. https://doi.org/10.3389/fphys.2019.00470.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pierre B, et al. Triiodothyronine-mediated up-regulation of UCP2 and UCP3 mRNA expression in human skeletal muscle without coordinated induction of mitochondrial respiratory chain genes. FASEB J. 2001;15(1):13–5. https://doi.org/10.1096/fj.00-0502fje.

    Article  Google Scholar 

  61. Flandin P, et al. Uncoupling protein-3 as a molecular determinant of the action of 3,5,3′-triiodothyronine on energy metabolism. Endocrine. 2009;36:246–54. https://doi.org/10.1007/s12020-009-9217-8.

    Article  CAS  PubMed  Google Scholar 

  62. Phillips KJ. Beige fat, adaptive thermogenesis, and its regulation by exercise and thyroid hormone. Biology. 2019;8:57. https://doi.org/10.3390/biology8030057.

    Article  CAS  PubMed Central  Google Scholar 

  63. Dittner C, et al. At thermoneutrality, acute thyroxine-induced thermogenesis and pyrexia are independent of UCP1. Mol Metab. 2019;25:20–34.

    Article  CAS  Google Scholar 

  64. Johann K, et al. Thyroid-hormone-induced browning of white adipose tissue does not contribute to thermogenesis and glucose consumption. Cell Rep. 2019;27:3385–3400.e3.

    Article  CAS  Google Scholar 

  65. Zhang Q, et al. The effects of thyroid hormones on brown adipose tissue in humans: a PET-CT study. Diabetes Metab Res Rev. 2014;30(6):513–20. https://doi.org/10.1002/dmrr.2556.

    Article  CAS  PubMed  Google Scholar 

  66. Haber RS, et al. Stimulation of potassium efflux in rat liver by a low dose of thyroid hormone: evidence for enhanced cation permeability in the absence of Na,K-ATPase induction. Endocrinology. 1986;118(1):207–11.

    Article  CAS  Google Scholar 

  67. Haber RS, et al. Time course of Na,K transport and other metabolic responses to thyroid hormone in clone 9 cells. Endocrinology. 1988;123(1):238–47.

    Article  CAS  Google Scholar 

  68. Freake HC, et al. The regulation of lipogenesis by thyroid hormone and its contribution to thermogenesis. Endocrinology. 1989;125(6):2868–74.

    Article  CAS  Google Scholar 

  69. Everts ME, et al. Na(+)-K+ pump in rat muscle: effects of hypophysectomy, growth hormone, and thyroid hormone. Am J Physiol. 1990;259:E278–83. https://doi.org/10.1152/ajpendo.1990.259.2.E278.

    Article  CAS  PubMed  Google Scholar 

  70. Phakdeekitcharoen B, et al. Thyroid hormone increases mRNA and protein expression of Na(+)-K(+)-ATPase α2 and β1 subunits in human skeletal muscles. J Clin Endocrinol Metab. 2007;92(1):353–8. https://doi.org/10.1210/jc.2006-0552.

    Article  CAS  PubMed  Google Scholar 

  71. Marie V, et al. Calcium pool size modulates the sensitivity of the ryanodine receptor channel and calcium-dependent ATPase of heavy sarcoplasmic reticulum to extravesicular free calcium concentration. J Cell Physiol. 1998;175:283–94. https://doi.org/10.1002/(SICI)1097-4652(199806)175:3<283::AID-JCP6>3.0.CO;2-K.

    Article  CAS  PubMed  Google Scholar 

  72. Simonides WS, et al. Characterization of the promoter of the rat sarcoplasmic endoplasmic reticulum Ca2+-ATPase 1 gene and Analysis of thyroid hormone responsiveness. J Biol Chem. 1996;271:32048–56.

    Article  CAS  Google Scholar 

  73. Watanabe M, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439:484–9. https://doi.org/10.1038/nature04330.

    Article  CAS  PubMed  Google Scholar 

  74. Johansson C, et al. Cardiovascular phenotype and temperature control in mice lacking thyroid hormone receptor-β or both α1 and β. Am J Physiol. 1999;276(6):H2006–12. https://doi.org/10.1152/ajpheart.1999.276.6.H2006.

    Article  CAS  PubMed  Google Scholar 

  75. Ribeiro MO, et al. Thyroid hormone–sympathetic interaction and adaptive thermogenesis are thyroid hormone receptor isoform–specific. J Clin Invest. 2001;108:97–105. https://doi.org/10.1172/JCI200112584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Miguel L, et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med. 2010;16(9):1001–8. https://doi.org/10.1038/nm.2207.

    Article  CAS  Google Scholar 

  77. Boelen A, et al. Fasting-induced changes in the hypothalamus–pituitary–thyroid axis. Thyroid. 2008;18:123–9. https://doi.org/10.1089/thy.2007.0253.

    Article  CAS  PubMed  Google Scholar 

  78. Date Y, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology. 2000;141:4255–61.

    Article  CAS  Google Scholar 

  79. Kanamoto N, et al. Substantial production of ghrelin by a human medullary thyroid carcinoma cell line. J Clin Endocrinol Metab. 2001;6:4984–90. https://doi.org/10.1210/jcem.86.10.7891.

    Article  Google Scholar 

  80. Ahangarpour A, et al. Regulatory effects of paraventricular nucleus injections of ghrelin on the hypothalamus-pituitary-thyroid axis via CB1 receptors in male rats. Neurochem J. 2016;10:205–10.

    Article  CAS  Google Scholar 

  81. Barington M, et al. Ghrelin-mediated inhibition of the TSH-stimulated function of differentiated human thyrocytes ex vivo. PLoS One. 2017;12:e0184992. https://doi.org/10.1371/journal.pone.0184992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Morillo-Bernal J, et al. Ghrelin potentiates TSH-induced expression of the thyroid tissue-specific genes thyroglobulin, thyroperoxidase and sodium-iodine symporter, in rat PC-Cl3 cells. Peptides. 2011;32:2333–9. https://doi.org/10.1016/j.peptides.2011.09.013.

    Article  CAS  PubMed  Google Scholar 

  83. Röjdmark S, et al. Hunger-satiety signals in patients with Graves’ thyrotoxicosis before, during, and after long-term pharmacological treatment. Endocrine. 2005;27:55–61.

    Article  Google Scholar 

  84. Ruchala M, et al. Individual plasma ghrelin changes in the same patients in hyperthyroid, hypothyroid and euthyroid state. Peptides. 2014;51:31–4. https://doi.org/10.1016/j.peptides.2013.10.018.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Geronimo, V. (2021). Thyroid and Obesity. In: Luzi, L. (eds) Thyroid, Obesity and Metabolism. Springer, Cham. https://doi.org/10.1007/978-3-030-80267-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80267-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80266-0

  • Online ISBN: 978-3-030-80267-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics