Skip to main content

Thai Handwritten Recognition on BEST2019 Datasets Using Deep Learning

  • Conference paper
  • First Online:
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2021)

Abstract

Handwritten recognition is a difficult task. The conventional technique relies on the character segmentation, feature extraction, and classification process. The segmentation is a tremendous challenge when there are variation of character patterns and alignments in a sentence, such as linking segments between characters in the Thai language. Promising segmentation outcome is favorable but not applicable in most applications. This work proposes a methodology for Thai handwritten recognition by applying Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). The first step is text localization before feeding to the network. CNN extracts the abstract features before they are fed to RNN to learn the sequence of characters in an image. The optimization is performed with an integrated Connectionist Temporal Classification (CTC) module (to arrange the final results). A standard Thai handwritten dataset (BEST2019) and more collection are used in this study. for training and test sets. The experimental results show that the integration of CNN and RNN provides promising results of the test set with a Character Error Rate (CER) of 1.58%. For testing with the seen and unseen dataset of the final round of BEST2019 competition, the CER is at 24.53%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 31 July 2021

    The word ‘encoded’ has been updated to ‘decoded’ in section 4.3 of the chapter.

References

  1. NECTEC.: OCR ArnThai service, http://arnthai.nectec.or.th/. Accessed 28 Feb 2015

  2. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 253–256 (2010)

    Google Scholar 

  3. Bouchain, D.: Character recognition using convolutional neural networks. In: Institute for Neural Information Processing (2007)

    Google Scholar 

  4. Simard, P. Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: Proceedings of the 7th International Conference on Document Analysis and Recognition, pp. 958–963. (2003)

    Google Scholar 

  5. Lauer, F., Suen, C.Y., Bloch, G.: A trainable feature extractor for handwritten digit recognition. Pattern Recogn. 40(6), 1816–1824 (2007)

    Article  Google Scholar 

  6. Breuel, T., Frinken V., Liwicki, M.: High-performance OCR for printed English and Fraktur using LSTM networks. In: Proceedings of the 12th International Conference on Document Analysis and Recognition (ICDAR), pp. 683–687.(2013)

    Google Scholar 

  7. Smith, R.: Tesseract-ocr/docs, https://github.com/tesseract-ocr/docs/tree/master/das_tutorial2016. Accessed 22 Dec 2017

  8. Sinthupinyo, W.: Benchmark for Enhancing the Standard Thai Language Processing (BEST). https://thailang.nectec.or.th/best/best2019-handwrittenrecognition-objective/. Accessed 15 May 2019

  9. Chamchong, R., Fung, C.C.: Text line extraction using adaptive partial projection for palm leaf manuscripts from Thailand. In: Proceeding of 2012 International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 588–593 (2012)

    Google Scholar 

  10. Karnchanapusakij, C., Suwannakat, P., Rakprasertsuk W., Dejdumrong, N.: Online handwriting thai character recognition. In: The 6th International Conference on Computer Graphics, Imaging and Visualization, Tianjin, pp. 323–328 (2009)

    Google Scholar 

  11. Methasate, I., Sae-tang, S.: The clustering technique for thai handwritten recognition. In: Proceeding of International Workshop on Frontiers in Handwriting Recognition, Japan, pp. 450–454. (2004)

    Google Scholar 

  12. NECTEC, NSTDA, https://aiforthai.in.th/index.php. Accessed 20 Dec 2019

  13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations, pp. 730–734 (2015)

    Google Scholar 

  14. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of the 23rd International Conference on Machine learning, pp. 369–376. ACM (2006)

    Google Scholar 

  15. Deng, H., Stathopoulos, G., Suen, C.Y.: Error correcting output coding for the convolutional neural network for optical character recognition. In: Proceeding of the 10th International Conference on Document Analysis and Recognition, pp. 581–585 (2009)

    Google Scholar 

  16. Bluche, T.: Deep Neural Networks for Large Vocabulary Handwritten Text Recognition (2015)

    Google Scholar 

  17. Chollet, F. Keras: the Python deep learning API, https://keras.io/. Accessed 23 Feb 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rapeeporn Chamchong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chamchong, R., Saisangchan, U., Pawara, P. (2021). Thai Handwritten Recognition on BEST2019 Datasets Using Deep Learning. In: Chomphuwiset, P., Kim, J., Pawara, P. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2021. Lecture Notes in Computer Science(), vol 12832. Springer, Cham. https://doi.org/10.1007/978-3-030-80253-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80253-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80252-3

  • Online ISBN: 978-3-030-80253-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics