Skip to main content

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

We present an overview of the field of Integration-By-Parts with special emphasis on Laporta’s algorithm. We give an overview of the problems associated with Laporta’s algorithm and try to illustrate possible ways out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Chetyrkin, F. Tkachov, Nucl. Phys. B 192, 159 (1981). https://doi.org/10.1016/0550-3213(81)90199-1

    Article  Google Scholar 

  2. R.N. Lee, JHEP 07, 031 (2008). https://doi.org/10.1088/1126-6708/2008/07/031

    Article  Google Scholar 

  3. J. Blümlein, Analytic integration methods in quantum field theory: an Introduction, [arXiv:2103.10652 [hep-th]], contribution to this volume

    Google Scholar 

  4. S. Laporta, Int. J. Mod. Phys. A 15, 5087 (2000). https://doi.org/10.1016/S0217-751X(00)00215-7

    MathSciNet  Google Scholar 

  5. R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [hep-ph]

    Google Scholar 

  6. M. Steinhauser, Comput. Phys. Commun. 134, 335 (2001). https://doi.org/10.1016/S0010-4655(00)00204-6

    Article  Google Scholar 

  7. A. Pikelner, Comput. Phys. Commun. 224, 282 (2018). https://doi.org/10.1016/j.cpc.2017.11.017

    Article  Google Scholar 

  8. R. Mertig, R. Scharf, Comput. Phys. Commun. 111, 265 (1998). https://doi.org/10.1016/S0010-4655(98)00042-3

    Article  Google Scholar 

  9. S.A. Larin, F.V. Tkachov, J.A.M. Vermaseren, The FORM version of MINCER, NIKHEF-H-91-18 (1991)

    Google Scholar 

  10. S.G. Gorishnii, S.A. Larin, L.R. Surguladze, F.V. Tkachov, Comput. Phys. Commun. 55, 381 (1989). https://doi.org/10.1016/0010-4655(89)90134-3

    Article  Google Scholar 

  11. B. Ruijl, T. Ueda, J.A.M. Vermaseren, Comput. Phys. Commun. 253, 107198 (2020). https://doi.org/10.1016/j.cpc.2020.107198

    Article  MathSciNet  Google Scholar 

  12. J. Vermaseren, Some steps towards improving IBP calculations and related topics, contribution to this volume

    Google Scholar 

  13. H. Frellesvig, Top-down Decomposition: A Cut-based Approach to Integral Reductions, contribution tro this volume

    Google Scholar 

  14. A. von Manteuffel, C. Studerus, Reduze 2 - Distributed Feynman Integral Reduction, arXiv:1201.4330 [hep-ph]

    Google Scholar 

  15. C. Studerus, Comput. Phys. Commun. 181, 1293 (2010). https://doi.org/10.1016/j.cpc.2010.03.012

    Article  MathSciNet  Google Scholar 

  16. A.V. Smirnov, F.S. Chuharev, Comput. Phys. Commun. 247, 106877 (2020). https://doi.org/10.1016/j.cpc.2019.106877

    Article  Google Scholar 

  17. A.V. Smirnov, Comput. Phys. Commun. 189, 182 (2015). https://doi.org/10.1016/j.cpc.2014.11.024

    Article  Google Scholar 

  18. A.V. Smirnov, V.A. Smirnov, Comput. Phys. Commun. 184, 2820 (2013). https://doi.org/10.1016/j.cpc.2013.06.016

    Article  Google Scholar 

  19. A.V. Smirnov, JHEP 10, 107 (2008). https://doi.org/10.1088/1126-6708/2008/10/107

    Article  Google Scholar 

  20. P. Maierhöfer, J. Usovitsch, P. Uwer, Comput. Phys. Commun. 230, 99 (2018). https://doi.org/10.1016/j.cpc.2018.04.012

    Article  Google Scholar 

  21. J. Klappert, F. Lange, Comput. Phys. Commun. 247, 106951 (2020). https://doi.org/10.1016/j.cpc.2019.106951

    Article  Google Scholar 

  22. A.V. Kotikov, Differential equations and Feynman integrals, arXiv:2102.07424 [hep-ph], contribution to this volume

    Google Scholar 

  23. P. Kant, Comput. Phys. Commun. 185, 1473 (2014). https://doi.org/10.1016/j.cpc.2014.01.017

    Article  Google Scholar 

  24. J. Gluza, K. Kajda, D.A. Kosower, Phys. Rev. D 83, 045012 (2011). https://doi.org/10.1103/PhysRevD.83.045012

    Article  Google Scholar 

  25. B. Agarwal, S.P. Jones, A. von Manteuffel, Two-loop helicity amplitudes for gg → ZZ with full top-quark mass effects, arXiv:2011.15113 [hep-ph]

    Google Scholar 

  26. J. Klappert, F. Lange, P. Maierhöfer, J. Usovitsch, Integral Reduction with Kira 2.0 and Finite Field Methods, arXiv:2008.06494 [hep-ph]

    Google Scholar 

  27. T. Peraro, JHEP 07, 031 (2019). https://doi.org/10.1007/JHEP07(2019)031

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Marquard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marquard, P. (2021). Integration-by-Parts: A Survey. In: Blümlein, J., Schneider, C. (eds) Anti-Differentiation and the Calculation of Feynman Amplitudes. Texts & Monographs in Symbolic Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-80219-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80219-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80218-9

  • Online ISBN: 978-3-030-80219-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics