Skip to main content

Extremal Controls for the Duits Car

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12829))

Included in the following conference series:

Abstract

We study a time minimization problem for a model of a car that can move forward on a plane and turn in place. Trajectories of this system are used in image processing for the detection of salient lines. The problem is a modification of a well-known sub-Riemannian problem in the roto-translation group, where one of the controls is restricted to be non-negative. The problem is of interest in geometric control theory as a model example in which the set of admissible controls contains zero on the boundary. We apply a necessary optimality condition—Pontryagin maximum principle to obtain a Hamiltonian system for normal extremals. By analyzing the Hamiltonian system we show a technique to obtain a single explicit formula for extremal controls. We derive the extremal controls and express the extremal trajectories in quadratures.

This work is supported by the Russian Science Foundation under grant 17-11-01387-P and performed in Ailamazyan Program Systems Institute of Russian Academy of Sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Laumond, J.-P.: Feasible Trajectories for Mobile Robots with Kinematic and Environment Constraints. IAS (1986)

    Google Scholar 

  2. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957)

    Article  MathSciNet  Google Scholar 

  3. Reeds, J.A., Shepp, L.A.: Optimal paths for a car that goes both forwards and backwards. Pacific J. Math. 145(2), 367–393 (1990)

    Article  MathSciNet  Google Scholar 

  4. Sachkov, Y.L.: Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane. In: ESAIM: COCV, vol. 17, pp. 293–321 (2011)

    Google Scholar 

  5. Duits, R., Meesters, S.P.L., Mirebeau, J.-M., Portegies, J.M.: Optimal paths for variants of the 2D and 3D Reeds-Shepp car with applications in image analysis. J. Math. Imaging Vis. 60, 816–848 (2018)

    Article  MathSciNet  Google Scholar 

  6. Petitot, J.: The neurogeometry of pinwheels as a sub-Riemannian contact structure. J. Physiol. Paris 97(2–3), 265–309 (2003)

    Article  Google Scholar 

  7. Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. JMIV 24(3), 307–326 (2006)

    Article  MathSciNet  Google Scholar 

  8. Mashtakov, A.P., Ardentov, A.A., Sachkov, Y.L.: Parallel algorithm and software for image inpainting via sub-Riemannian minimizers on the group of roto translations. NMTMA 6(1), 95–115 (2013)

    Article  Google Scholar 

  9. Boscain, U., Gauthier, J., Prandi, D., Remizov, A.: Image reconstruction via non-isotropic diffusion in Dubins/Reed-Shepp-like control systems. In: 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, pp. 4278–4283 (2014)

    Google Scholar 

  10. Bekkers, E.J., Duits, R., Mashtakov, A., Sanguinetti, G.R.: A PDE approach to data-driven sub-Riemannian geodesics in SE(2). SIAM JIS 8(4), 2740–2770 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Scharpach, W.L.J.: Optimal paths for the Reeds-Shepp car with monotone spatial control and vessel tracking in medical image analysis. Ms. Thesis (2018)

    Google Scholar 

  12. Mirebeau, J.-M.: Anisotropic Fast-Marching on cartesian grids using lattice basis reduction. SIAM J. Num. Anal. 52(4), 1573–1599 (2014)

    Article  MathSciNet  Google Scholar 

  13. Agrachev, A.A., Sachkov, Y.L.: Control theory from the geometric viewpoint. In: Agrachev, A.A. (ed.) Encyclopaedia of Mathematical Sciences. Springer, Berlin (2004). https://doi.org/10.1007/978-3-662-06404-7

    Chapter  Google Scholar 

  14. Ardentov, A., Lokutsievskiy, L., Sachkov, Yu.L.: Explicit solutions for a series of classical optimization problems with 2-dimensional control via convex trigonometry. Optimization and Control (2020). https://arxiv.org/pdf/2004.10194.pdf

  15. Laurent-Gengoux, C., Pichereau, A., Vanhaecke, P.: Poisson structures. In: Pichereau, A. (ed.) Grundlehren der mathematischen Wissenschaften, p. 347. Springer-Verlag, Berlin (2013). https://doi.org/10.1007/978-3-642-31090-4

    Chapter  Google Scholar 

  16. Duits, R., Boscain, U., Rossi, F., Sachkov, Y.: Association fields via cuspless sub-Riemannian geodesics in SE(2). J. Math. Imaging Vis. 49(2), 384–417 (2013). https://doi.org/10.1007/s10851-013-0475-y

    Article  MathSciNet  MATH  Google Scholar 

  17. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1962)

    MATH  Google Scholar 

  18. M. Lakshmanan, S. Rajasekar, Nonlinear Dynamics: Integrability Chaos and Patterns. Advanced Texts in Physics. Springer-Verlag, Berlin p. 619 (2003). https://doi.org/10.1007/978-3-642-55688-3

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mashtakov, A. (2021). Extremal Controls for the Duits Car. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2021. Lecture Notes in Computer Science(), vol 12829. Springer, Cham. https://doi.org/10.1007/978-3-030-80209-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80209-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80208-0

  • Online ISBN: 978-3-030-80209-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics