Skip to main content

Fast and Asymptotic Steering to a Steady State for Networks Flows

  • Conference paper
  • First Online:
Book cover Geometric Science of Information (GSI 2021)

Abstract

We study the problem of optimally steering a network flow to a desired steady state, such as the Boltzmann distribution with a lower temperature, both in finite time and asymptotically. In the infinite horizon case, the problem is formulated as constrained minimization of the relative entropy rate. In such a case, we find that, if the prior is reversible, so is the solution.

Supported in part by the NSF under grant 1807664, 1839441, 1901599, 1942523, the AFOSR under grants FA9550-20-1-0029, and by the University of Padova Research Project CPDA 140897.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(x=(x_0,x_1,\ldots ,x_N)\) is feasible if \((x_i,x_{i+1})\in \mathcal E, \forall i\).

  2. 2.

    Relative entropy (divergence, Kullback-Leibler index) is defined by

    $$\begin{aligned} {\mathbb D}(\mathfrak P\Vert \mathfrak M):=\left\{ \begin{array}{ll} \sum _{x}\mathfrak P(x)\log \frac{\mathfrak P(x)}{\mathfrak M(x)}, &{} \mathrm{Supp}(\mathfrak P)\subseteq \mathrm{Supp}(\mathfrak M),\\ +\infty , &{} \mathrm{Supp}(\mathfrak P)\not \subseteq \mathrm{Supp}(\mathfrak M),\end{array}\right. \end{aligned}$$

    Here, by definition, \(0\cdot \log 0=0\). The value of \({\mathbb D}(\mathfrak P\Vert \mathfrak M)\) may turn out to be negative due to the different total masses in the case when \({\mathfrak M}\) is not a probability measure. The optimization problem, however, poses no challenge as the relative entropy is (jointly) convex over this larger domain and bounded below.

  3. 3.

    Please see the Introduction for the historical justification of this name.

References

  1. Beurling, A.: An automorphism of product measures. Ann. Math. 72, 189–200 (1960)

    Article  MathSciNet  Google Scholar 

  2. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables I. Phys. Rev. 85, 166 (1952)

    Google Scholar 

  3. Chen, Y., Georgiou, T.T., Pavon, M.: Fast cooling for a system of stochastic oscillators. J. Math. Phys. 56(11), 113302 (2015)

    Google Scholar 

  4. Chen, Y., Georgiou, T.T., Pavon, M.: Entropic and displacement interpolation: a computational approach using the Hilbert metric. SIAM J. Appl. Math. 76(6), 2375–2396 (2016)

    Article  MathSciNet  Google Scholar 

  5. Chen, Y., Georgiou, T.T., Pavon, M.: Stochastic control liaisons: Richard Sinkhorn meets Gaspard Monge on a Schrödinger bridge, ArXiv e-prints, arXiv: 2005.10963. SIAM Review, 63, 249–313 (2021)

  6. Chen, Y., Georgiou, T.T., Pavon, M.: Optimal transport in systems and control. Ann. Rev. Contr. Robot. Auton. Syst. 4, 89–113 (2021)

    Google Scholar 

  7. Chen, Y., Georgiou, T.T., Pavon, M.: Controlling uncertainty: Schrödinger’s inference method and the optimal steering of probability distributions. IEEE Control Syst. Mag, (2020, to appear)

    Google Scholar 

  8. Chen, Y., Georgiou, T.T., Pavon, M.: Optimal steering to invariant distributions for networks flows. http://arxiv.org/abs/2102.12628

  9. Chen, Y., Georgiou, T.T., Pavon, M., Tannenbaum, A.: Robust transport over networks. IEEE Trans. Aut. Control 62(9), 4675–4682 (2017)

    Article  MathSciNet  Google Scholar 

  10. Chen, Y., Georgiou, T.T., Pavon, M., Tannenbaum, A.: Efficient-robust routing for single-commodity network flows. IEEE Trans. Aut. Control 63, 2287–2294 (2018)

    Article  MathSciNet  Google Scholar 

  11. Chen, Y., Georgiou, T.T., Pavon, M., Tannenbaum, A.: Relaxed Schroödinger bridges and robust network routing. IEEE Trans. Control Netw. Syst. 7(2), 923–931 (2020)

    Google Scholar 

  12. Conforti, G.: A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost. Prob. Th. Rel. Fields 174(1), 1–47 (2019)

    Article  Google Scholar 

  13. Conforti, G., Pavon, M.: Extremal flows in Wasserstein space. J. Math. Phys. 59(6), 063502 (2018)

    Google Scholar 

  14. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems, pp. 2292–2300 (2013)

    Google Scholar 

  15. Deming, W.E., Stephan, F.F.: On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Statist. 11(4), 427–444 (1940)

    Article  MathSciNet  Google Scholar 

  16. Fényes, I.: Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik. Z. Phys. 132, 81–106 (1952)

    Article  Google Scholar 

  17. Föllmer, H.: Random fields and diffusion processes. In: Hennequin, P.-L. (ed.) École d’Été de Probabilités de Saint-Flour XV–XVII, 1985–87. LNM, vol. 1362, pp. 101–203. Springer, Heidelberg (1988). https://doi.org/10.1007/BFb0086180

    Chapter  MATH  Google Scholar 

  18. Fortet, R.: Résolution d’un système d’equations de M. Schrödinger. J. Math. Pure Appl. IX, 83–105 (1940)

    Google Scholar 

  19. Georgiou, T.T., Pavon, M.: Positive contraction mappings for classical and quantum Schrödinger systems. J. Math. Phys. 56, 033301 (2015)

    Google Scholar 

  20. Häggström, O.: Finite Markov Chains and Algorithmic Applications, London Mathematical Society Student Texts \(52\). Cambridge University Press, Cambridge (2002)

    Google Scholar 

  21. Hernandez, D.B., Pavon, M.: Equilibrium description of a particle system in a heat bath. Acta Appl. Math. 14, 239–256 (1989)

    Article  MathSciNet  Google Scholar 

  22. Jamison, B.: The Markov processes of Schrödinger. Z. Wahrscheinlichkeitstheorie verw. Gebiete 32, 323–331 (1975)

    Article  MathSciNet  Google Scholar 

  23. Léonard, C.: A survey of the Schroedinger problem and some of its connections with optimal transport. Discrete Contin. Dyn. Syst. A 34(4), 1533–1574 (2014)

    Article  MathSciNet  Google Scholar 

  24. Levy, B.C., Krener, A.J.: Stochastic mechanics of reciprocal diffusions. J. Math. Phys. 37, 769 (1996)

    Article  MathSciNet  Google Scholar 

  25. Madelung, E.: Quantentheorie in hydrodyn. Form Z. Physik 40, 322–326 (1926)

    Google Scholar 

  26. Marshall, A.W., Olkin, I.: Scaling of matrices to achieve specified row and column sums. Numer. Math. 12, 83–90 (1968)

    Article  MathSciNet  Google Scholar 

  27. Mikami, T.: Monge’s problem with a quadratic cost by the zero-noise limit of h-path processes. Probab. Theory Relat. Fields 129, 245–260 (2004)

    Article  MathSciNet  Google Scholar 

  28. Nelson, E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton (1967)

    Book  Google Scholar 

  29. Pavon, M., Ticozzi, F.: Discrete-time classical and quantum Markovian evolutions: maximum entropy problems on path space. J. Math. Phys. 51, 042104 (2010)

    Google Scholar 

  30. Peyré, G., Cuturi, M.: Computational optimal transport. Found. Trends Machine Learn. 11(5–6), 1–257 (2019)

    MATH  Google Scholar 

  31. Schrödinger, E.: Über die Umkehrung der Naturgesetze, Sitzungsberichte der Preuss Akad. Wissen. Berlin Phys. Math. Klasse 10, 144–153 (1931)

    Google Scholar 

  32. Schrödinger, E.: Sur la théorie relativiste de l’électron et l’interpretation de la mécanique quantique. Ann. Inst. H. Poincaré 2, 269 (1932)

    MathSciNet  MATH  Google Scholar 

  33. Sinkhorn, R.: A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann. Math. Statist. 35(2), 876–879 (1964)

    Article  MathSciNet  Google Scholar 

  34. von Renesse, M.K.: An optimal transport view on Schrödinger’s equation. Canad. Math. Bull 55(4), 858–869 (2012)

    Article  MathSciNet  Google Scholar 

  35. Villani, C.: Topics in optimal transportation, vol. 58. AMS (2003)

    Google Scholar 

  36. Wakolbinger, A.: Schroedinger bridges from 1931 to 1991. Contribuciones en probabilidad y estadistica matematica 3, 61–79 (1992)

    Google Scholar 

  37. Zambrini, J.C.: Stochastic mechanics according to E. Schrödinger. Phys. Rev. A 33, 1532–1548 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tryphon Georgiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Georgiou, T., Pavon, M. (2021). Fast and Asymptotic Steering to a Steady State for Networks Flows. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2021. Lecture Notes in Computer Science(), vol 12829. Springer, Cham. https://doi.org/10.1007/978-3-030-80209-7_92

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80209-7_92

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80208-0

  • Online ISBN: 978-3-030-80209-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics