Skip to main content

Wasserstein Proximal of GANs

  • Conference paper
  • First Online:
Book cover Geometric Science of Information (GSI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12829))

Included in the following conference series:

Abstract

We introduce a new method for training generative adversarial networks by applying the Wasserstein-2 metric proximal on the generators. The approach is based on Wasserstein information geometry. It defines a parametrization invariant natural gradient by pulling back optimal transport structures from probability space to parameter space. We obtain easy-to-implement iterative regularizers for the parameter updates of implicit deep generative models. Our experiments demonstrate that this method improves the speed and stability of training in terms of wall-clock time and Fréchet Inception Distance.

A. Lin, W. Li and S. Osher were supported by AFOSR MURI FA 9550-18-1-0502, AFOSR FA 9550-18-0167, ONR N00014-18-2527 and NSF DMS 1554564 (STROBE). G. Montúfar has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 757983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amari, S.: Natural gradient works efficiently in learning. Neural Comput. 10(2), 251–276 (1998)

    Article  Google Scholar 

  2. Amari, S.: Information Geometry and Its Applications. AMS, vol. 194. Springer, Tokyo (2016). https://doi.org/10.1007/978-4-431-55978-8

    Book  MATH  Google Scholar 

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv:1701.07875 [cs, stat] (2017)

  4. Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L.: Information Geometry. EMGFASMSM, vol. 64. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56478-4

    Book  MATH  Google Scholar 

  5. Frogner, C., Zhang, C., Mobahi, H., Araya-Polo, M., Poggio, T.: Learning with a Wasserstein Loss. arXiv:1506.05439 [cs, stat] (2015)

  6. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680. Curran Associates Inc. (2014)

    Google Scholar 

  7. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  Google Scholar 

  8. Li, W.: Transport information geometry: Riemannian calculus on probability simplex. arXiv:1803.06360 [math] (2018)

  9. Li, W., Montúfar, G.: Natural gradient via optimal transport. Inf. Geom. 1(2), 181–214 (2018)

    Article  MathSciNet  Google Scholar 

  10. Li, W., Montúfar, G.: Ricci curvature for parametric statistics via optimal transport. arXiv:1807.07095 [cs, math, stat] (2018)

  11. Montavon, G., Müller, K.-R., Cuturi, M.: Wasserstein training of restricted Boltzmann machines. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29, pp. 3718–3726. Curran Associates Inc. (2016)

    Google Scholar 

  12. Ollivier, Y.: Riemannian metrics for neural networks I: feedforward networks. Inf. Infer. J. IMA 4(2), 108–153 (2015)

    Google Scholar 

  13. Otto, F.: The geometry of dissipative evolution equations the porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001)

    Article  MathSciNet  Google Scholar 

  14. Tong Lin, A., Li, W., Osher, S., Montúfar, G.: Wasserstein proximal of GANs. arXiv:2102.06862 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuchen Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, A.T., Li, W., Osher, S., Montúfar, G. (2021). Wasserstein Proximal of GANs. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2021. Lecture Notes in Computer Science(), vol 12829. Springer, Cham. https://doi.org/10.1007/978-3-030-80209-7_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80209-7_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80208-0

  • Online ISBN: 978-3-030-80209-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics