Skip to main content

Continuous Wavelet Transforms for Vector-Valued Functions

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12829))

Included in the following conference series:

  • 2307 Accesses

Abstract

We consider continuous wavelet transforms associated to unitary representations of the semi-direct product of a vector group with a linear Lie group realized on the Hilbert spaces of square-integrable vector-valued functions. In particular, we give a concrete example of an admissible vector-valued function (vector field) for the 3-dimensional similitude group.

Partially supported by KAKENHI 20K03657 and Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ali, S.T., Antoine, J.-P., Gazeau, J.-P.: Coherent States, Wavelets and Their Generalizations. Graduate Texts in Contemporary Physics, Springer, New York (2000). https://doi.org/10.1007/978-1-4612-1258-4

    Book  MATH  Google Scholar 

  2. Diximier, J.: Sur les représentations de certains groupes orthogonaux. C.R. Acad. Sci. Paris 250, 3263–3265 (1960)

    Google Scholar 

  3. Esmaeelzadeh, F., Kamyabi Gol, R.A.: On the C.W.T on homogeneous spaces associated to quasi invariant measure. J. Pseudo-Differ. Oper. Appl. 9, 487–494 (2018). https://doi.org/10.1007/s11868-018-0255-y

    Article  MathSciNet  MATH  Google Scholar 

  4. Folland, G.B.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  5. Führ, H.: Abstract Harmonic Analysis of Continuous Wavelet Transform. Lecture Notes in Mathematics, vol. 1863. Springer, Heidelberg (2005). https://doi.org/10.1007/b104912

    Book  MATH  Google Scholar 

  6. Grossmann, A., Morlet, J., Paul, T.: Transforms associated to square integrable group representations I. General results. J. Math. Phys. 26, 2473–2479 (1985)

    Article  MathSciNet  Google Scholar 

  7. Lessig, C.: Divergence free polar wavelets for the analysis and representation of fluid flows. J. Math. Fluid Mech. 21(1), 20 (2019). https://doi.org/10.1007/s00021-019-0408-7. Article number: 18

    Article  MathSciNet  MATH  Google Scholar 

  8. Ohshiro, K.: Construction of continuous wavelet transforms associated to unitary representations of semidirect product groups. Doctoral thesis, Nagoya University (2017)

    Google Scholar 

  9. Urban, K.: Wavelet bases in H(div) and H(curl). Math. Comput. 70, 739–766 (2001)

    Article  MathSciNet  Google Scholar 

  10. Whitney, H.: Elementary structure of real algebraic varieties. Ann. Math. 66, 545–556 (1957)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Ishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ishi, H., Oshiro, K. (2021). Continuous Wavelet Transforms for Vector-Valued Functions. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2021. Lecture Notes in Computer Science(), vol 12829. Springer, Cham. https://doi.org/10.1007/978-3-030-80209-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80209-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80208-0

  • Online ISBN: 978-3-030-80209-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics