Skip to main content

Colloidal Microrobotic Swarms

  • Chapter
  • First Online:
Field-Driven Micro and Nanorobots for Biology and Medicine

Abstract

Swarm behaviour of living systems, which stems from the self-organization among individual elements, is a common feature in nature. Since two decades ago, scientists begin to investigate the principles of natural swarms and try to leverage them for promising applications. This chapter reviews the fundamental principles and potential biomedical applications of microrobotic swarms driven by magnetic, electric, optical and acoustic fields and chemical signaling and will also elaborate one type of the swarms, vortex-like swarms, about its generation principles, mechanism analysis and actuation and control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nelson, B. J., Kaliakatsos, I. K., & Abbott, J. J. (2010). Microrobots for minimally invasive medicine. Annual Review of Biomedical Engineering, 12, 55–85.

    Article  Google Scholar 

  2. Sitti, M., Ceylan, H., Hu, W., Giltinan, J., Turan, M., Yim, S., & Diller, E. (2015). Biomedical applications of untethered mobile milli/microrobots. Proceedings of the IEEE, 103(2), 205–224.

    Article  Google Scholar 

  3. Zhang, L., Abbott, J. J., Dong, L., Kratochvil, B. E., Bell, D., & Nelson, B. J. (2009). Artificial bacterial flagella: Fabrication and magnetic control. Applied Physics Letters, 94(6), 064107.

    Article  Google Scholar 

  4. Peyer, K. E., Zhang, L., Kratochvil, B. E., & Nelson, B. J. (2010, May). Non-ideal swimming of artificial bacterial flagella near a surface. In 2010 IEEE international conference on robotics and automation (pp. 96–101). IEEE.

    Google Scholar 

  5. Zhang, L., Abbott, J. J., Dong, L., Peyer, K. E., Kratochvil, B. E., Zhang, H., Bergeles, C., & Nelson, B. J. (2009). Characterizing the swimming properties of artificial bacterial flagella. Nano Letters, 9(10), 3663–3667.

    Article  Google Scholar 

  6. Petit, T., Zhang, L., Peyer, K. E., Kratochvil, B. E., & Nelson, B. J. (2012). Selective trapping and manipulation of microscale objects using mobile microvortices. Nano Letters, 12(1), 156–160.

    Article  Google Scholar 

  7. Folio, D., & Ferreira, A. (2017). Two-dimensional robust magnetic resonance navigation of a ferromagnetic microrobot using pareto optimality. IEEE Transactions on Robotics, 33(3), 583–593.

    Article  Google Scholar 

  8. Sadelli, L., Fruchard, M., & Ferreira, A. (2016). 2D observer-based control of a vascular microrobot. IEEE Transactions on Automatic Control, 62(5), 2194–2206.

    Article  MathSciNet  Google Scholar 

  9. De Lanauze, D., Felfoul, O., Turcot, J. P., Mohammadi, M., & Martel, S. (2014). Three-dimensional remote aggregation and steering of magnetotactic bacteria microrobots for drug delivery applications. The International Journal of Robotics Research, 33(3), 359–374.

    Article  Google Scholar 

  10. Snezhko, A., & Aranson, I. S. (2011). Magnetic manipulation of self-assembled colloidal asters. Nature Materials, 10(9), 698–703.

    Article  Google Scholar 

  11. Servant, A., Qiu, F., Mazza, M., Kostarelos, K., & Nelson, B. J. (2015). Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Advanced Materials, 27(19), 2981–2988.

    Article  Google Scholar 

  12. Li, J., de Ávila, B. E. F., Gao, W., Zhang, L., & Wang, J. (2017). Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Science Robotics, 2(4), eaam6431.

    Article  Google Scholar 

  13. Becker, A., Onyuksel, C., Bretl, T., & McLurkin, J. (2014). Controlling many differential-drive robots with uniform control inputs. The International Journal of Robotics Research, 33(13), 1626–1644.

    Article  Google Scholar 

  14. Donald, B. R., Levey, C. G., Paprotny, I., & Rus, D. (2013). Planning and control for microassembly of structures composed of stress-engineered MEMS microrobots. The International Journal of Robotics Research, 32(2), 218–246.

    Article  Google Scholar 

  15. Martel, S., & Mohammadi, M. (2010, May). Using a swarm of self-propelled natural microrobots in the form of flagellated bacteria to perform complex micro-assembly tasks. In 2010 IEEE international conference on robotics and automation (pp. 500–505). IEEE.

    Google Scholar 

  16. Vach, P. J., Walker, D., Fischer, P., Fratzl, P., & Faivre, D. (2017). Pattern formation and collective effects in populations of magnetic microswimmers. Journal of Physics D: Applied Physics, 50(11), 11LT03.

    Article  Google Scholar 

  17. Chen, Q., Bae, S. C., & Granick, S. (2011). Directed self-assembly of a colloidal kagome lattice. Nature, 469(7330), 381–384.

    Article  Google Scholar 

  18. Mao, X., Chen, Q., & Granick, S. (2013). Entropy favours open colloidal lattices. Nature Materials, 12(3), 217–222.

    Article  Google Scholar 

  19. Yan, J., Bloom, M., Bae, S. C., Luijten, E., & Granick, S. (2012). Linking synchronization to self-assembly using magnetic Janus colloids. Nature, 491(7425), 578–581.

    Article  Google Scholar 

  20. Yan, J., Chaudhary, K., Bae, S. C., Lewis, J. A., & Granick, S. (2013). Colloidal ribbons and rings from Janus magnetic rods. Nature Communications, 4(1), 1–9.

    Google Scholar 

  21. Hong, Y., Diaz, M., Córdova-Figueroa, U. M., & Sen, A. (2010). Light-driven titanium-dioxide-based reversible microfireworks and micromotor/micropump systems. Advanced Functional Materials, 20(10), 1568–1576.

    Article  Google Scholar 

  22. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J., & Chaikin, P. M. (2013). Living crystals of light-activated colloidal surfers. Science, 339(6122), 936–940.

    Article  Google Scholar 

  23. Xu, T., Soto, F., Gao, W., Dong, R., Garcia-Gradilla, V., Magaña, E., Zhang, X., & Wang, J. (2015). Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields. Journal of the American Chemical Society, 137(6), 2163–2166.

    Article  Google Scholar 

  24. Diller, E., Pawashe, C., Floyd, S., & Sitti, M. (2011). Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. The International Journal of Robotics Research, 30(14), 1667–1680.

    Article  Google Scholar 

  25. Miyashita, S., Diller, E., & Sitti, M. (2013). Two-dimensional magnetic micro-module reconfigurations based on inter-modular interactions. The International Journal of Robotics Research, 32(5), 591–613.

    Article  Google Scholar 

  26. Kagan, D., Balasubramanian, S., & Wang, J. (2011). Chemically triggered swarming of gold microparticles. Angewandte Chemie, 123(2), 523–526.

    Article  Google Scholar 

  27. Snezhko, A., Belkin, M., Aranson, I.S. & Kwok, W.K. (2009). Self-assembled magnetic surface swimmers. Physical Review Letters, 102(11), 118103.

    Google Scholar 

  28. Yu, J., Wang, B., Du, X., Wang, Q. & Zhang, L. (2018). Ultra-extensible ribbon-like magnetic microswarm. Nature Communications, 9(1), 1–9.

    Google Scholar 

  29. Yu, J., Jin, D., Chan, K.F., Wang, Q., Yuan, K. & Zhang, L. (2019). Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nature Communications, 10(1), 1–12.

    Google Scholar 

  30. Yu, J., Yang, L., & Zhang, L. (2018). Pattern generation and motion control of a vortex-like paramagnetic nanoparticle swarm. The International Journal of Robotics Research, 37(8), 912–930.

    Article  Google Scholar 

  31. Chaluvadi, B., Stewart, K.M., Sperry, A.J., Fu, H.C. & Abbott, J.J. (2020). Kinematic model of a magnetic-microrobot swarm in a rotating magnetic dipole field. IEEE Robotics and Automation Letters, 5(2), 2419–2426.

    Google Scholar 

  32. Felfoul, O., Mohammadi, M., Taherkhani, S., De Lanauze, D., Xu, Y.Z., Loghin, D., Essa, S., Jancik, S., Houle, D., Lafleur, M. & Gaboury, L. (2016). Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nature Nanotechnology, 11(11), 941–947.

    Google Scholar 

  33. Wang, B., Chan, K.F., Yu, J., Wang, Q., Yang, L., Chiu, P.W.Y. & Zhang, L. (2018). Reconfigurable swarms of ferromagnetic colloids for enhanced local hyperthermia. Advanced Functional Materials, 28(25), 1705701.

    Google Scholar 

  34. Dong, X., & Sitti, M. (2020). Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms. The International Journal of Robotics Research, 39(5), 617–638.

    Article  Google Scholar 

  35. Yan, J., Han, M., Zhang, J., Xu, C., Luijten, E. & Granick, S. (2016). Reconfiguring active particles by electrostatic imbalance. Nature Materials, 15(10), 1095–1099.

    Google Scholar 

  36. Zhang, B., Sokolov, A., & Snezhko, A. (2020). Reconfigurable emergent patterns in active chiral fluids. Nature Communications, 11(1), 1–9.

    Article  Google Scholar 

  37. Leunissen, M. E., Vutukuri, H. R., & van Blaaderen, A. (2009). Directing colloidal self-assembly with biaxial electric fields. Advanced Materials, 21(30), 3116–3120.

    Article  Google Scholar 

  38. Singh, D.P., Choudhury, U., Fischer, P. & Mark, A.G. (2017). Non-equilibrium assembly of light-activated colloidal mixtures. Advanced Materials, 29(32), 1701328.

    Google Scholar 

  39. Klajn, R., Wesson, P.J., Bishop, K.J. & Grzybowski, B.A. (2009). Writing self-erasing images using metastable nanoparticle “inks”. Angewandte Chemie International Edition, 48(38), 7035–7039.

    Google Scholar 

  40. Liu, W., Chen, X., Lu, X., Wang, J., Zhang, Y. & Gu, Z. (2020). From passive inorganic oxides to active matters of micro/nanomotors. Advanced Functional Materials, 30(39), 2003195.

    Google Scholar 

  41. Melde, K., Mark, A.G., Qiu, T. & Fischer, P. (2016). Holograms for acoustics. Nature, 537(7621), 518–522.

    Google Scholar 

  42. Ahmed, D., Baasch, T., Blondel, N., Läubli, N., Dual, J. & Nelson, B.J. (2017). Neutrophil-inspired propulsion in a combined acoustic and magnetic field. Nature Communications, 8(1), 1–8.

    Google Scholar 

  43. Chen, Y., Ding, X., Steven Lin, S.C., Yang, S., Huang, P.H., Nama, N., Zhao, Y., Nawaz, A.A., Guo, F., Wang, W. & Gu, Y. (2013). Tunable nanowire patterning using standing surface acoustic waves. ACS Nano, 7(4), 3306–3314.

    Google Scholar 

  44. Keya, J.J., Suzuki, R., Kabir, A.M.R., Inoue, D., Asanuma, H., Sada, K., Hess, H., Kuzuya, A. & Kakugo, A. (2018). DNA-assisted swarm control in a biomolecular motor system. Nature Communications, 9(1), 1–8.

    Google Scholar 

  45. Theurkauff, I., Cottin-Bizonne, C., Palacci, J., Ybert, C. & Bocquet, L. (2012). Dynamic clustering in active colloidal suspensions with chemical signaling. Physical Review Letters, 108(26), 268–303.

    Google Scholar 

  46. Van Reenen, A., de Jong, A.M., den Toonder, J.M. & Prins, M.W. (2014). Integrated lab-on-chip biosensing systems based on magnetic particle actuation–a comprehensive review. Lab on a Chip, 14(12), 1966–1986.

    Google Scholar 

  47. Choi, J., Jeong, S., Cha, K., Qin, L., Li, J., Park, J. & Park, S. (2010). Positioning of microrobot in a pulsating flow using EMA system. In 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (pp. 588–593). IEEE.

    Google Scholar 

  48. Vrooijink, G.J., Abayazid, M., Patil, S., Alterovitz, R. & Misra, S. (2014). Needle path planning and steering in a three-dimensional non-static environment using two-dimensional ultrasound images. The International Journal of Robotics Research, 33(10), 1361–1374.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangfan Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zou, Q., Wang, Y., Yu, J. (2022). Colloidal Microrobotic Swarms. In: Sun, Y., Wang, X., Yu, J. (eds) Field-Driven Micro and Nanorobots for Biology and Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-80197-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80197-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80196-0

  • Online ISBN: 978-3-030-80197-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics