Skip to main content

Electric-Field-Driven Micro/Nanomachines for Biological Applications

  • Chapter
  • First Online:
Field-Driven Micro and Nanorobots for Biology and Medicine

Abstract

The electric tweezers based on the combined AC and DC electric fields have been proven to be a powerful nano-manipulation tool in precisely controlling the position, speed, and orientation of longitudinal nanoparticles. The ability to do so has led to advanced applications in biology such as the first in vitro biomolecule delivery to single live cells by the manipulation of nanowires, transport of cargo, assembly of arrays of rotary micro/nanoelectromechanical devices, and tunable biomolecule release. The principle of high-speed electric rotation might also be exploited toward enhanced capturing and sensing of dilute biomolecules in suspension. Furthermore, the working principles of the electric tweezers and factors that may influence the locomotion of the micro-/nanomotors such as the Reynolds number and electric double layer are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., & Chu, S. (1986). Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 11(5), 288–290.

    Google Scholar 

  2. Wang, J., Xiong, Z., Zhan, X., Dai, B., Zheng, J., Liu, J., & Tang, J. (2017). A Silicon Nanowire as a Spectrally Tunable Light‐Driven Nanomotor. Advanced Materials, 29(30), 1701451.

    Google Scholar 

  3. Pal, M., Somalwar, N., Singh, A., Bhat, R., Eswarappa, S. M., Saini, D. K., & Ghosh, A. (2018). Maneuverability of magnetic nanomotors inside living cells. Advanced Materials, 30(22), 1800429.

    Google Scholar 

  4. Venugopalan, P. L., Jain, S., Shivashankar, S., & Ghosh, A. (2018). Single coating of zinc ferrite renders magnetic nanomotors therapeutic and stable against agglomeration. Nanoscale, 10(5), 2327–2332.

    Google Scholar 

  5. Liu, M., Wu, F., Piao, H., Huang, X., Cong, J., Luo, Z., Pan, L., & Liu, Y. (2017). Rod-shaped nanomotor powered by magnetic field gradients and its application to surface-enhanced Raman-scattering-based detection. Applied Physics Express, 10(4), 045202.

    Google Scholar 

  6. Esteban-Fernández De Ávila, B., Angell, C., Soto, F., Lopez-Ramirez, M. A., Báez, D. F., Xie, S., Wang, J., & Chen, Y. (2016). Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano, 10(5), 4997–5005.

    Google Scholar 

  7. Soto, F., Wagner, G. L., Garcia-Gradilla, V., Gillespie, K. T., Lakshmipathy, D. R., Karshalev, E., Angell, C., Chen, Y., & Wang, J. (2016). Acoustically propelled nanoshells. Nanoscale, 8(41), 17788–17793.

    Google Scholar 

  8. Ding, X., Lin, S. C. S., Kiraly, B., Yue, H., Li, S., Chiang, I. K., Shi, J., Benkovic, S. J., & Huang, T. J. (2012). On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proceedings of the National Academy of Sciences, 109(28), 11105–11109.

    Google Scholar 

  9. Melde, K., Mark, A. G., Qiu, T., & Fischer, P. (2016). Holograms for acoustics. Nature, 537(7621), 518–522.

    Google Scholar 

  10. Paxton, W. F., Kistler, K. C., Olmeda, C. C., Sen, A., Angelo, S. K. S., Cao, Y., Mallouk, T. E., Lammert, P. E., & Crespi, V. H. (2004). Catalytic nanomotors: autonomous movement of striped nanorods. Journal of the American Chemical Society, 126(41), 13424–13431.

    Google Scholar 

  11. Fan, D. L., Zhu, F. Q., Cammarata, R. C., & Chien, C. L. (2011). Electric tweezers. Nano Today, 6(4), 339–354.

    Google Scholar 

  12. Fan, D. L., Cammarata, R. C., & Chien, C. L. (2008). Precision transport and assembling of nanowires in suspension by electric fields. Applied Physics Letters, 92(9), 093115.

    Google Scholar 

  13. Purcell, E. M. (1977). Life at low Reynolds number. American Journal of Physics, 45(1), 3–11.

    Google Scholar 

  14. Pethig, R. R. (2017). Dielectrophoresis: Theory, methodology and biological applications. Hoboken: Wiley.

    Google Scholar 

  15. Liang, Z., Guo, J., & Fan, D. L. (2019). Manipulation, assembling, and actuation of nanomotors by electric tweezers. Sawston/Cambridge: Woodhead Publishing.

    Google Scholar 

  16. Markx, G. H., Huang, Y., Zhou, X., & Pethig, R. (1994). Dielectrophoretic characterization and separation of micro-organisms. Microbiology, 140(3), 585–591.

    Google Scholar 

  17. Einstein, A. (1905). On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Annals of Physics, 322, 549.

    Google Scholar 

  18. Bian, X., Kim, C., & Karniadakis, G. E. (2016). 111 years of Brownian motion. Soft Matter, 12(30), 6331–6346.

    Google Scholar 

  19. Ramos, A., Morgan, H., Green, N. G., & Castellanos, A. (1998). Ac electrokinetics: a review of forces in microelectrode structures. Journal of Physics D: Applied Physics, 31(18), 2338.

    Google Scholar 

  20. Salari, A., Navi, M., Lijnse, T., & Dalton, C. (2019). AC electrothermal effect in microfluidics: A review. Micromachines, 10(11), 762.

    Google Scholar 

  21. Fan, D., Yin, Z., Cheong, R., Zhu, F. Q., Cammarata, R. C., Chien, C. L., & Levchenko, A. (2010). Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires. Nature Nanotechnology, 5(7), 545–551.

    Google Scholar 

  22. Xu, X., Kim, K., & Fan, D. (2015). Tunable release of multiplex biochemicals by plasmonically active rotary nanomotors. Angewandte Chemie, 127(8), 2555–2559.

    Google Scholar 

  23. Liu, C., Kim, K., & Fan, D. L. (2014). Location deterministic biosensing from quantum-dot-nanowire assemblies. Applied Physics Letters, 105(8), 083123.

    Google Scholar 

  24. Guo, J., Liang, Z., Huang, Y., Kim, K., Vandeventer, P., & Fan, D. E. (2020). Acceleration of Biomolecule Enrichment and Detection with Rotationally Motorized Opto-Plasmonic Microsensors and the Working Mechanism. ACS Nano, 14(11), 15204–15215.

    Google Scholar 

  25. Guo, J., Gallegos, J. J., Tom, A. R., & Fan, D. (2018). Electric-field-guided precision manipulation of catalytic nanomotors for cargo delivery and powering nanoelectromechanical devices. ACS Nano, 12(2), 1179–1187.

    Google Scholar 

  26. Kim, K., Xu, X., Guo, J., & Fan, D. L. (2014). Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks. Nature Communications, 5(1), 1–9.

    Google Scholar 

  27. Liu, J., Guo, J., Meng, G., & Fan, D. (2018). Superstructural raman nanosensors with integrated dual functions for ultrasensitive detection and tunable release of molecules. Chemistry of Materials, 30(15), 5256–5263.

    Google Scholar 

  28. Liu, C., Wang, Z., Li, E., Liang, Z., Chakravarty, S., Xu, X., Wang, A. X., Chen, R. T., & Fan, D. (2017). Electrokinetic manipulation integrated plasmonic–photonic hybrid raman nanosensors with dually enhanced sensitivity. ACS Sensors, 2(3), 346–353.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of the National Science Foundation (grant no. 1710922 and 1930649) and The Welch Foundation (grant no. F-1734).

  • Revised: ((will be filled in by the editorial staff)).

  • Published online: ((will be filled in by the editorial staff)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donglei (Emma) Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joh, H., Fan, D.(. (2022). Electric-Field-Driven Micro/Nanomachines for Biological Applications. In: Sun, Y., Wang, X., Yu, J. (eds) Field-Driven Micro and Nanorobots for Biology and Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-80197-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80197-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80196-0

  • Online ISBN: 978-3-030-80197-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics