Skip to main content

Magnetic Micro-/Nanopropellers for Biomedicine

  • Chapter
  • First Online:
Field-Driven Micro and Nanorobots for Biology and Medicine

Abstract

In nature, many bacteria swim by rotating their helical flagella. A particularly promising class of artificial micro- and nanorobots mimic this propeller-like propulsion mechanism to move through fluids and tissues for applications in minimally invasive medicine. Several fundamental challenges have to be overcome in order to build micro-machines that move similar to bacteria for in vivo applications. Here, we review recent advances of magnetically powered micro- and nanopropellers. Four important aspects of the propellers – the geometrical shape, the fabrication method, the generation of magnetic fields for actuation, and the choice of biocompatible magnetic materials – are highlighted. First, the fundamental requirements are elucidated that arise due to hydrodynamics at low Reynolds (Re) number. We discuss the role that the propellers’ shape and symmetry play in realizing effective propulsion at low Re. Second, the additive nano-fabrication method glancing angle deposition is discussed as a versatile technique to quickly grow large numbers of designer nano-helices. Third, systems to generate rotating magnetic fields via permanent magnets or electromagnetic coils are presented. And finally, the biocompatibility of the magnetic materials is discussed. Iron-platinum is highlighted due to its biocompatibility and its superior magnetic properties, which is promising for targeted delivery, minimally invasive magnetic nanodevices, and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Happel, J., & Brenner, H. (1981). Low Reynolds number hydrodynamics (Vol. 1). Springer Netherlands.

    Book  Google Scholar 

  2. Purcell, E. M. (1977, January). Life at low Reynolds number. American Journal of Physics, 45(1), 3. https://doi.org/10.1119/1.10903

    Article  Google Scholar 

  3. Baranova, N. B., & Zel’dovich, B. Y. (1978, August). Separation of mirror isomeric molecules by radio-frequency electric field of rotating polarization. Chemical Physics Letters, 57(3), 435–437. https://doi.org/10.1016/0009-2614(78)85543-2

    Article  Google Scholar 

  4. Ghosh, A., & Fischer, P. (2009, June). Controlled propulsion of artificial magnetic nanostructured propellers. Nano Letters, 9(6), 2243–2245. https://doi.org/10.1021/nl900186w

  5. Zhang, L., Abbott, J. J., Dong, L., Kratochvil, B. E., Bell, D., & Nelson, B. J. (2009, February). Artificial bacterial flagella: Fabrication and magnetic control. Applied Physics Letters, 94(6), 064107. https://doi.org/10.1063/1.3079655

    Article  Google Scholar 

  6. Schamel, D., Pfeifer, M., Gibbs, J. G., Miksch, B., Mark, A. G., & Fischer, P. (2013, August). Chiral colloidal molecules and observation of the propeller effect terms of use. Journal of the American Chemical Society, 135(33), 12353–12359. https://doi.org/10.1021/ja405705x

    Article  Google Scholar 

  7. Keaveny, E. E., Walker, S. W., & Shelley, M. J. (2013, February). Optimization of chiral structures for microscale propulsion. Nano Letters, 13(2), 531–537. https://doi.org/10.1021/nl3040477

    Article  Google Scholar 

  8. Morozov, K. I., Mirzae, Y., Kenneth, O., & Leshansky, A. M. (2017, April). Dynamics of arbitrary shaped propellers driven by a rotating magnetic field. Physical Review Fluids, 2(4). https://doi.org/10.1103/PhysRevFluids.2.044202

  9. Sachs, J., et al. (2018, December). Role of symmetry in driven propulsion at low Reynolds number. Physical Review E, 98(6). https://doi.org/10.1103/PhysRevE.98.063105

  10. Cohen, K. J., Rubinstein, B. Y., Kenneth, O., & Leshansky, A. M. (2019, July). Unidirectional propulsion of planar magnetic nanomachines. Physical Review Applied, 12(1), 014025. https://doi.org/10.1103/PhysRevApplied.12.014025

    Article  Google Scholar 

  11. Qiu, T., et al. (2014). Swimming by reciprocal motion at low Reynolds number. Nature Communications, 5. https://doi.org/10.1038/ncomms6119

  12. Zhou, C. M., & Gall, D. (2006). The structure of Ta nanopillars grown by glancing angle deposition. Thin Solid Films, 515(3), 1223–1227. https://doi.org/10.1016/j.tsf.2006.07.136

    Article  Google Scholar 

  13. Glass, R., Möller, M., & Spatz, J. P. (Oct. 2003). Block copolymer micelle nanolithography. Nanotechnology, 14(10), 1153–1160. https://doi.org/10.1088/0957-4484/14/10/314

    Article  Google Scholar 

  14. Mark, A. G., Gibbs, J. G., Lee, T. C., & Fischer, P. (2013). Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nature Materials, 12(9), 802–807. https://doi.org/10.1038/nmat3685

    Article  Google Scholar 

  15. Sliker, L., Ciuti, G., Rentschler, M., & Menciassi, A. (2015, November 2). Magnetically driven medical devices: A review. Expert Review of Medical Devices, 12(6), 737–752. Taylor and Francis Ltd. https://doi.org/10.1586/17434440.2015.1080120

  16. Li, D., et al. (2019). Soft phantom for the training of renal calculi diagnostics and lithotripsy. https://doi.org/10.1109/EMBC.2019.8856426

    Book  Google Scholar 

  17. Li, D., Jeong, M., Oren, E., Yu, T., & Qiu, T. (2019, October). A helical microrobot with an optimized propeller-shape for propulsion in viscoelastic biological media. Robotics, 8(4), 87. https://doi.org/10.3390/robotics8040087

    Article  Google Scholar 

  18. Jeong, M., Choi, E., Li, D., Palagi, S., Fischer, P., & Qiu, T. (2019, July). A magnetic actuation system for the active microrheology in soft biomaterials. https://doi.org/10.1109/MARSS.2019.8860985

    Book  Google Scholar 

  19. Nelson, B. J., Kaliakatsos, I. K., & Abbott, J. J. (2010, July). Microrobots for minimally invasive medicine. Annual Review of Biomedical Engineering, 12(1), 55–85. https://doi.org/10.1146/annurev-bioeng-010510-103409

    Article  Google Scholar 

  20. Fischer, P., & Ghosh, A. (2011, February 10). Magnetically actuated propulsion at low Reynolds numbers: Towards nanoscale control. Nanoscale, 3(2), 557–563. The Royal Society of Chemistry. https://doi.org/10.1039/c0nr00566e.

  21. Nacev, A., et al. (2012). Towards control of magnetic fluids in patients: Directing therapeutic nanoparticles to disease locations. IEEE Control Systems, 32(3), 32–74. https://doi.org/10.1109/MCS.2012.2189052

    Article  MathSciNet  MATH  Google Scholar 

  22. Azizi, A., Tremblay, C. C., Gagné, K., & Martel, S. (2019, November). Using the fringe field of a clinical MRI scanner enables robotic navigation of tethered instruments in deeper vascular regions. Science Robotics, 4(36), 7342. https://doi.org/10.1126/scirobotics.aax7342

    Article  Google Scholar 

  23. Qiu, T., Schamel, D., Mark, A. G., & Fischer, P. (2014, September). Active microrheology of the vitreous of the eye applied to nanorobot propulsion. In Proceedings – IEEE international conference on robotics and automation (pp. 3801–3806). https://doi.org/10.1109/ICRA.2014.6907410

    Chapter  Google Scholar 

  24. Walker, D., Käsdorf, B. T., Jeong, H. H., Lieleg, O., & Fischer, P. (2015, December). Biomolecules: Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Science Advances, 1(11), e1500501. https://doi.org/10.1126/sciadv.1500501

    Article  Google Scholar 

  25. Wu, Z., et al. (2018, November). A swarm of slippery micropropellers penetrates the vitreous body of the eye. Science Advances, 4(11), eaat4388. https://doi.org/10.1126/sciadv.aat4388

    Article  Google Scholar 

  26. Li, J., et al. (2016, October). Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano, 10(10), 9536–9542. https://doi.org/10.1021/acsnano.6b04795

    Article  Google Scholar 

  27. De Ávila, B. E. F., et al. (2017, December). Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nature Communications, 8(1), 1–9. https://doi.org/10.1038/s41467-017-00309-w

    Article  Google Scholar 

  28. Wu, Z., et al. (2019, July). A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Science Robotics, 4(32). https://doi.org/10.1126/scirobotics.aax0613

  29. Shapiro, B., Dormer, K., & Rutel, I. B. (2010). A two-magnet system to push therapeutic nanoparticles. AIP Conference Proceedings, 1311(1), 77–88. https://doi.org/10.1063/1.3530064

    Article  Google Scholar 

  30. Zhang, W., Meng, Y., & Huang, P. (2008, October). A novel method of arraying permanent magnets circumferentially to generate a rotation magnetic field. IEEE Transactions on Magnetics, 44(10), 2367–2372. https://doi.org/10.1109/TMAG.2008.2002505

    Article  Google Scholar 

  31. Ryan, P., & Diller, E. (2016, June). Five-degree-of-freedom magnetic control of micro-robots using rotating permanent magnets. In Proceedings – IEEE international conference on robotics and automation (Vol. 2016-June, pp. 1731–1736). https://doi.org/10.1109/ICRA.2016.7487317

    Chapter  Google Scholar 

  32. Qiu, T., Palagi, S., Sachs, J., & Fischer, P. (2018, September). Soft miniaturized linear actuators wirelessly powered by rotating permanent magnets. In Proceedings – IEEE international conference on robotics and automation (pp. 3595–3600). https://doi.org/10.1109/ICRA.2018.8461145

    Chapter  Google Scholar 

  33. Baun, O., & Blümler, P. (2017, October). Permanent magnet system to guide superparamagnetic particles. Journal of Magnetism and Magnetic Materials, 439, 294–304. https://doi.org/10.1016/j.jmmm.2017.05.001

    Article  Google Scholar 

  34. Kummer, M. P., Abbott, J. J., Kratochvil, B. E., Borer, R., Sengul, A., & Nelson, B. J. (2010). OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation. In Proceedings – IEEE international conference on robotics and automation (pp. 1610–1616). https://doi.org/10.1109/ROBOT.2010.5509241

    Chapter  Google Scholar 

  35. Tasoglu, S., Diller, E., Guven, S., Sitti, M., & Demirci, U. (2014, January). Untethered micro-robotic coding of three-dimensional material composition. Nature Communications, 5(1), 1–9. https://doi.org/10.1038/ncomms4124

    Article  Google Scholar 

  36. Wang, X., et al. (2018, February). A three-dimensional magnetic Tweezer system for Intraembryonic navigation and measurement. IEEE Transactions on Robotics, 34(1), 240–247. https://doi.org/10.1109/TRO.2017.2765673

    Article  Google Scholar 

  37. Kratochvil, B. E., Kummer, M. P., Abbott, J. J., Borer, R., Ergeneman, O., & Nelson, B. J. (2010). OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation. In Proceedings –IEEE international conference on robotics and automation (pp. 1080–1081). https://doi.org/10.1109/ROBOT.2010.5509857

    Chapter  Google Scholar 

  38. Rahmer, J., Stehning, C., & Gleich, B. (2018, March). Remote magnetic actuation using a clinical scale system. PLoS One, 13(3), e0193546. https://doi.org/10.1371/journal.pone.0193546

    Article  Google Scholar 

  39. Venugopalan, P. L., Jain, S., Shivashankar, S., & Ghosh, A. (2018, February). Single coating of zinc ferrite renders magnetic nanomotors therapeutic and stable against agglomeration. Nanoscale, 10(5), 2327–2332. https://doi.org/10.1039/c7nr08291f

    Article  Google Scholar 

  40. Pal, M., et al. (2018, May). Maneuverability of magnetic nanomotors inside living cells. Advanced Materials, 30(22), 1800429. https://doi.org/10.1002/adma.201800429

    Article  Google Scholar 

  41. Mhanna, R., et al. (2014, May). Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery. Small, 10(10), 1953–1957. https://doi.org/10.1002/smll.201303538

    Article  Google Scholar 

  42. Venugopalan, P. L., Esteban-Fernández De Ávila, B., Pal, M., Ghosh, A., & Wang, J. (2020, August 25). Fantastic voyage of nanomotors into the cell. ACS Nano, 14(8), 9423–9439. American Chemical Society. https://doi.org/10.1021/acsnano.0c05217

  43. Kadiri, V. M., et al. (2020, June). Biocompatible magnetic micro- and nanodevices: fabrication of FePt nanopropellers and cell transfection. Advanced Materials, 32(25), 2001114. https://doi.org/10.1002/adma.202001114

    Article  Google Scholar 

  44. Stoddart, M. J. (2011). Cell viability assays: Introduction. Methods in Molecular Biology (Clifton, N.J.), 740. Humana Press, 1–6. https://doi.org/10.1007/978-1-61779-108-6_1

    Article  Google Scholar 

  45. Kopeček, J., & Ulbrich, K. (1983, January 1). Biodegradation of biomedical polymers. Progress in Polymer Science, 9(1), 1–58. Pergamon. https://doi.org/10.1016/0079-6700(83)90005-9

  46. Jain, T. K., Reddy, M. K., Morales, M. A., Leslie-Pelecky, D. L., & Labhasetwar, V. (2008, March). Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Molecular Pharmaceutics, 5(2), 316–327. https://doi.org/10.1021/mp7001285

    Article  Google Scholar 

  47. Griffith, W. H., Pavcek, P. L., & Mulford, D. J. (1942). The relation of the sulphur amino acids to the toxicity of cobalt and nickel in the rat. The Journal of Nutrition, 23(6), 603–612. https://doi.org/10.1093/jn/23.6.603

    Article  Google Scholar 

  48. Ermolli, M., Menné, C., Pozzi, G., Serra, M. Á., & Clerici, L. A. (2001, February). Nickel, cobalt and chromium-induced cytotoxicity and intracellular accumulation in human hacat keratinocytes. Toxicology, 159(1–2), 23–31. https://doi.org/10.1016/S0300-483X(00)00373-5

    Article  Google Scholar 

  49. Yan, X., et al. (2015, September). Magnetite nanostructured porous hollow helical microswimmers for targeted delivery. Advanced Functional Materials, 25(33), 5333–5342. https://doi.org/10.1002/adfm.201502248

    Article  Google Scholar 

  50. Yan, X., et al. (2017, November). Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Science Robotics, 2(12), 22. https://doi.org/10.1126/scirobotics.aaq1155

    Article  Google Scholar 

  51. Peters, C., Hoop, M., Pané, S., Nelson, B. J., & Hierold, C. (2016, January). Degradable magnetic composites for minimally invasive interventions: Device fabrication, targeted drug delivery, and cytotoxicity tests. Advanced Materials, 28(3), 533–538. https://doi.org/10.1002/adma.201503112

    Article  Google Scholar 

  52. Bozuyuk, U., Yasa, O., Yasa, I. C., Ceylan, H., Kizilel, S., & Sitti, M. (2018, September). Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano, 12(9), 9617–9625. https://doi.org/10.1021/acsnano.8b05997

    Article  Google Scholar 

  53. Wang, X., et al. (2018, November). 3D printed enzymatically biodegradable soft helical microswimmers. Advanced Functional Materials, 28(45), 1804107. https://doi.org/10.1002/adfm.201804107

    Article  Google Scholar 

  54. Ceylan, H., Yasa, I. C., Yasa, O., Tabak, A. F., Giltinan, J., & Sitti, M. (2019, March). 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano, 13(3), 3353–3362. https://doi.org/10.1021/acsnano.8b09233

    Article  Google Scholar 

  55. Qiu, F., Fujita, S., Mhanna, R., Zhang, L., Simona, B. R., & Nelson, B. J. (2015, January). Magnetic helical microswimmers functionalized with Lipoplexes for targeted gene delivery. Advanced Functional Materials, 25(11), 1666–1671. https://doi.org/10.1002/adfm.201403891

    Article  Google Scholar 

  56. Thompson, S. P. (1896). Dynamo-electric machinery: A manual for students of electrotechnics. American Technical Book Company.

    Google Scholar 

  57. Fuerst, C. D., & Brewer, E. G. (1993, May). High-remanence rapidly solidified Nd-Fe-B: Die-upset magnets (invited). Journal of Applied Physics, 73(10), 5751–5756. https://doi.org/10.1063/1.353563

    Article  Google Scholar 

  58. Zhao, B. et al. (2007). Iron oxide(III) nanoparticles fabricated by electron beam irradiation method.

    Google Scholar 

  59. Son, K., et al. (2019, August). Superior magnetic performance in FePt L10 nanomaterials. Small, 15(34), 1902353. https://doi.org/10.1002/smll.201902353

    Article  Google Scholar 

  60. Shi, Y., Lin, M., Jiang, X., & Liang, S. (2015). Recent advances in FePt nanoparticles for biomedicine. Journal of Nanomaterials, 2015. Hindawi Limited. https://doi.org/10.1155/2015/467873

  61. Sachs, J. (2020). Motion, symmetry & spectroscopy of chiral nanostructures. University of Stuttgart.

    Google Scholar 

  62. Jeong, M., Choi, E., Li, D., Palagi, S., Fischer, P., & Qiu, T. (2019). A magnetic actuation system for the active microrheology in soft biomaterials. https://doi.org/10.1109/MARSS.2019.8860985

    Book  Google Scholar 

  63. Wu, Z., et al. (2018, November). A swarm of slippery micropropellers penetrates the vitreous body of the eye. Science Advances, 4(11), eaat4388. https://doi.org/10.1126/sciadv.aat4388

    Article  Google Scholar 

  64. Luo, H., Wang, D., He, J., & Lu, Y. (2005, February). Magnetic cobalt nanowire thin films. The Journal of Physical Chemistry. B, 109(5), 1919–1922. https://doi.org/10.1021/jp045554t

    Article  Google Scholar 

  65. Wang, W., Giltinan, J., Zakharchenko, S., & Sitti, M. (2017, May). Dynamic and programmable self-assembly of micro-rafts at the air-water interface. Science Advances, 3(5), e1602522. https://doi.org/10.1126/sciadv.1602522

    Article  Google Scholar 

  66. Ghosh, A., & Fischer, P. Controlled propulsion of artificial magnetic nanostructured propellers. https://doi.org/10.1021/nl900186w

  67. Zhu, S., et al. (2009, June). Biocompatibility of pure iron: In vitro assessment of degradation kinetics and cytotoxicity on endothelial cells. Materials Science and Engineering: C, 29(5), 1589–1592. https://doi.org/10.1016/j.msec.2008.12.019

    Article  Google Scholar 

  68. Maldonado-Camargo, L., Unni, M., & Rinaldi, C. (2017). Magnetic characterization of iron oxide nanoparticles for biomedical applications. Methods in Molecular Biology, 1570., Humana Press Inc., 47–71.

    Article  Google Scholar 

Download references

Acknowledgments

The work is partially funded by the Max Planck Society. T.Q. and V.K. acknowledge financial support from the Vector Foundation. T.Q. and M.J. acknowledge the support by the Stuttgart Center for Simulation Science (SimTech).

Received: 30th of March 2021

Revised: 24th August 2021

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peer Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qiu, T., Jeong, M., Goyal, R., Kadiri, V.M., Sachs, J., Fischer, P. (2022). Magnetic Micro-/Nanopropellers for Biomedicine. In: Sun, Y., Wang, X., Yu, J. (eds) Field-Driven Micro and Nanorobots for Biology and Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-80197-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80197-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80196-0

  • Online ISBN: 978-3-030-80197-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics