Skip to main content

Polymer-Based Swimming Nanorobots Driven by Chemical Fuels

  • Chapter
  • First Online:
Field-Driven Micro and Nanorobots for Biology and Medicine

Abstract

Field-driven biomedical micro-/nanorobots have attracted significant attention over the past decades because of their potential promises to be controlled toward hard-to-reach tissues for various biological and medical usages including active targeted drug/gene delivery, detoxification, and nanosurgery. Learning from biological molecular motors such as kinesin, which exert the autonomous motion though spontaneous hydrolysis of adenosine triphosphate into mechanic movement. Substantial efforts toward the development of chemically powered swimming micro-/nanorobots have recently demonstrated the capability of converting chemical energy into mechanical motion based on a fuel solution. In spite of the great promise, the major materials of the past chemical swimming micro-/nanorobots are primarily based on metals or metallic oxide with poor biocompatibility and biodegradability. With the envision of Richard Feynman, who imagined the fabrication of micro- and nanoscale machines by rearranging atoms and molecules, considerable efforts were devoted toward the chemical micro-/nanorobotics based on polymers with bottom-up techniques such as layer-by-layer molecular assembly and supramolecular assembly. In this chapter, we summarize the recent advances on investigating the fabrication of polymer-based micro-/nanorobots using bottom-up approaches and various aspects of their chemically powered propulsion including the propulsion mechanism, movement guidance, and chemotaxis. We also highlight the emerging technological approaches to enhance the navigation performances of micro-/nanorobots. The recent demonstrations of autonomous self-seeking motion and biomedical applications of such micro-/nanorobots are introduced. We conceive that perpetual polymer and fabrication innovations with interdisciplinary efforts can drive us closer to the fantasy of “swallowing surgeons.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Ozin, G. A., Manners, I., Fournier-Bidoz, S., & Arsenault, A. (2005). Advanced Materials, 17, 3011–3018; (b) Wang, J. (2013). Nanotechnology; (c) Sitti, M. J. N. R. M. (2018). Nature Reviews Materials, 3, 74–75; (d) Gao, C., Wang, Y., Ye, Z., Lin, Z., Ma, X., & He, Q. (2020). Advanced Materials, e2000512.

    Google Scholar 

  2. Purcell, E. M. (1977). American Journal of Physics, 45, 3–11.

    Article  Google Scholar 

  3. He, Q., Duan, L., Qi, W., Wang, K., Cui, Y., Yan, X., & Li, J. (2008). Advanced Materials, 20, 2933–2937.

    Article  Google Scholar 

  4. Wu, Z., Lin, X., Si, T., & He, Q. (2016). Small, 12, 3080–3093.

    Article  Google Scholar 

  5. Lin, X., Wu, Z., Wu, Y., Xuan, M., & He, Q. (2016). Advanced Materials, 28, 1060–1072.

    Article  Google Scholar 

  6. Ariga, K., Ji, Q., Hill, J. P., Bando, Y., & Aono, M. (2012). NPG Asia Materials, 4, e17.

    Article  Google Scholar 

  7. Ai, S., Lu, G., He, Q., & Li, J. (2003). Journal of the American Chemical Society, 125, 11140.

    Article  Google Scholar 

  8. Zhang, X., Chen, H., & Zhang, H. (2007). Chemical Communications, 14, 1395–1405.

    Article  Google Scholar 

  9. Wu, Y., Wu, Z., Lin, X., He, Q., & Li, J. (2012). ACS Nano, 6, 10910–10916.

    Article  Google Scholar 

  10. Wu, Y., Si, T., Lin, X., & He, Q. (2014). Chemical Communications, 51, 511–514.

    Article  Google Scholar 

  11. Del Mercato, L., Carraro, M., Zizzari, A., Bianco, M., Miglietta, R., Arima, V., Viola, I., Nobile, C., Sorarù, A., & Vilona, D. (2014). Chemistry – A European Journal, 20, 10910–10914.

    Article  Google Scholar 

  12. Wu, Z., Wu, Y., He, W., Lin, X., Sun, J., & He, Q. (2013). Angewandte Chemie, International Edition, 52, 7000–7003.

    Article  Google Scholar 

  13. Li, J., Huang, G., Ye, M., Li, M., Liu, R., & Mei, Y. (2011). Nanoscale, 3, 5083–5089.

    Article  Google Scholar 

  14. Wilson, D. A., Nolte, R. J. M., & van Hest, J. C. M. (2012). Nature Chemistry, 4, 268–274.

    Article  Google Scholar 

  15. Wu, Z., Li, J., Estebanfernandez De Avila, B., Li, T., Gao, W., He, Q., Zhang, L., & Wang, J. (2015). Advanced Functional Materials, 25, 7497–7501.

    Article  Google Scholar 

  16. Gao, C., Lin, Z., Jurado-Sánchez, B., Lin, X., Wu, Z., & He, Q. (2016). Small, 12, 4056–4062.

    Article  Google Scholar 

  17. Gao, C., Lin, Z., Wu, Z., Lin, X., & He, Q. (2016). ACS Applied Materials & Interfaces, 8, 34252–34260.

    Article  Google Scholar 

  18. Chen, C., Chang, X., Angsantikul, P., Li, J., Estebanfernandez De Avila, B., Karshalev, E., Liu, W., Mou, F., He, S., Castillo, R., Liang, Y., Guan, J., Zhang, L., & Wang, J. (2018). Advanced Biosystems, 2, 1700160.

    Article  Google Scholar 

  19. Deng, Z., Mou, F., Tang, S., Xu, L., Luo, M., & Guan, J. (2018). Applied Materials Today, 13, 45–53.

    Article  Google Scholar 

  20. Kline, T., Paxton, W., Mallouk, T., & Sen, A. (2004). Angewandte Chemie, International Edition, 44, 744–746.

    Article  Google Scholar 

  21. Burdick, J., Laocharoensuk, R., Wheat, P. M., Posner, J. D., Wang, J., & Am, J. (2008). Chemical Society, 130, 8164–8165.

    Article  Google Scholar 

  22. Tu, Y., Peng, F., Sui, X., Men, Y., White, P. B., van Hest, J. C. M., & Wilson, D. A. (2016). Nature Chemistry, 9, 480–486.

    Article  Google Scholar 

  23. Wu, Z., Lin, X., Wu, Y., Si, T., Sun, J., & He, Q. (2014). ACS Nano, 8, 6097–6105.

    Article  Google Scholar 

  24. Balasubramanian, S., Kagan, D., Manesh, K. M., Calvomarzal, P., Flechsig, G., & Wang, J. (2009). Small, 5, 1569–1574.

    Article  Google Scholar 

  25. Ionov, L. (2010). Journal of Materials Chemistry, 20, 3382–3390.

    Article  Google Scholar 

  26. Magdanz, V., Stoychev, G., Ionov, L., Sanchez, S., & Schmidt, O. (2014). Angewandte Chemie, International Edition, 53, 2673–2677.

    Article  Google Scholar 

  27. Gennes, P. G. D. (2010). Angewandte Chemie, International Edition, 104, 856–859.

    Article  Google Scholar 

  28. Calvomarzal, P., Manesh, K. M., Kagan, D., Balasubramanian, S., Cardona, M., Flechsig, G., Posner, J. D., & Wang, J. (2009). Chemical Communications, 4509–4511.

    Google Scholar 

  29. Qin, L., Banholzer, M. J., Xu, X., Huang, L., & Mirkin, C. A. (2007). Journal of the American Chemical Society, 129, 14870–14871.

    Article  Google Scholar 

  30. Ji, Y., Lin, X., Wu, Z., Wu, Y., Gao, W., & He, Q. (2019). Angewandte Chemie, International Edition, 58, 12200–12205.

    Article  Google Scholar 

  31. Hong, Y., Blackman, N. M. K., Kopp, N. D., Sen, A., & Velegol, D. (2007). Physical Review Letters, 99, 178103.

    Article  Google Scholar 

  32. Baraban, L., Harazim, S., Sanchez, S., & Schmidt, O. G. (2013). Angewandte Chemie, International Edition, 52, 5552–5556.

    Article  Google Scholar 

  33. Peng, F., Tu, Y., van Hest, J. C. M., & Wilson, D. A. (2015). Angewandte Chemie, International Edition, 54, 11662–11665.

    Article  Google Scholar 

  34. Shao, J., Xuan, M., Dai, L., Si, T., Li, J., & He, Q. (2015). Angewandte Chemie, International Edition, 54, 12782–12787.

    Article  Google Scholar 

  35. Ji, Y., Lin, X., Wang, D., Zhou, C., Wu, Y., & He, Q. (2019). Chemistry, an Asian Journal, 14, 2450–2455.

    Article  Google Scholar 

  36. Ji, Y., Lin, X., Zhang, H., Wu, Y., Li, J., & He, Q. (2019). Angewandte Chemie, International Edition, 58, 4184–4188.

    Article  Google Scholar 

  37. Tang, S., Zhang, F., Gong, H., Wei, F., Zhuang, J., Karshalev, E., Ávila, B. E. F., Huang, C., Zhou, Z., Li, Z., Yin, L., Dong, H., Fang, R. H., Zhang, X., Zhang, L., & Wang, J. (2020). Science Robotics, 5, eaba6137.

    Article  Google Scholar 

  38. Karshalev, E., Esteban-Fernández de Ávila, B., Beltrán-Gastélum, M., Angsantikul, P., Tang, S., Mundaca-Uribe, R., Zhang, F., Zhao, J., Zhang, L., & Wang, J. (2018). ACS Nano, 12, 8397–8405.

    Article  Google Scholar 

  39. Li, J., Esteban-Fernández de Ávila, B., Gao, W., Zhang, L., & Wang, J. (2017). Science Robotics, 2, eaam6431.

    Article  Google Scholar 

  40. Xu, Z., Chen, M., Lee, H., Feng, S., & Yeon, J. (2019). ACS Applied Materials & Interfaces, 11, 15727–15732.

    Article  Google Scholar 

  41. Vilela, D., Cossío, U., Parmar, J., Gómez-Vallejo, V., Martínez, A. M., Llop, J., & Sanchez, S. (2018). ACS Nano, 12, 1220–1227.

    Article  Google Scholar 

  42. Yu, J., Jin, D., Chan, K. F., Wang, Q., & Zhang, L. (2019). Nature Communications, 10, 5631.

    Article  Google Scholar 

  43. Wu, Z., Li, L., Yang, Y., Hu, P., Li, Y., Yang, S.-Y., Wang, L. V., & Gao, W. (2019). Science Robotics, 4, eaax0613.

    Article  Google Scholar 

  44. Wan, M., Chen, H., Wang, Q., Niu, Q., Xu, P., Yu, Y., Zhu, T., Mao, C., & Shen, J. (2019). Nature Communications, 10, 966.

    Article  Google Scholar 

  45. Baylis, J. R., Yeon, J. H., Thomson, M. H., Kazerooni, A., Wang, X., John, A. E. S., Lim, E. B., Chien, D., Lee, A., Zhang, J. Q., Piret, J. M., Machan, L. S., Burke, T. F., White, N. J., & Kastrup, C. J. (2015). Science Advances, 1, e1500379.

    Article  Google Scholar 

  46. Gao, W., Dong, R., Thamphiwatana, S., Li, J., & Wang, J. (2015). ACS Nano, 9, 117–123.

    Article  Google Scholar 

  47. de Avila, B. E., Angsantikul, P., Li, J., Lopezramirez, M. A., Ramirezherrera, D. E., Thamphiwatana, S., Chen, C., Delezuk, J., Samakapiruk, R., Ramez, V., Obonyo, M., Zhang, L., & Wang, J.(2017). Nature Communications, 8, 272.

    Article  Google Scholar 

  48. Li, J., Thamphiwatana, S., Liu, W., Estebanfernandez De Avila, B., Angsantikul, P., Sandraz, E., Wang, J., Xu, T., Soto, F., Ramez, V., Wang, X., Gao, W., Zhang, L., & Wang, J. (2016). ACS Nano, 10, 9536–9542.

    Article  Google Scholar 

  49. Li, J., Angsantikul, P., Liu, W., De Avila, B. E., Thamphiwatana, S., Xu, M., Sandraz, E., Wang, X., Delezuk, J., & Gao, W. (2017). Angewandte Chemie, International Edition, 56, 2156–2161.

    Article  Google Scholar 

  50. Wei, X., Beltrán-Gastélum, M., Karshalev, E., Esteban-Fernández de Ávila, B., Zhou, J., Ran, D., Angsantikul, P., Fang, R. H., Wang, J., & Zhang, L. (2019). Nano Letters, 19, 4760–4769.

    Article  Google Scholar 

  51. He, W., Frueh, J., Hu, N., Liu, L., Gai, M., & He, Q. (2016). Advancement of Science, 3, 1600206.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, Z., Yang, T., He, Q. (2022). Polymer-Based Swimming Nanorobots Driven by Chemical Fuels. In: Sun, Y., Wang, X., Yu, J. (eds) Field-Driven Micro and Nanorobots for Biology and Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-80197-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80197-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80196-0

  • Online ISBN: 978-3-030-80197-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics