Skip to main content

Microrobots in the Gastrointestinal Tract

  • Chapter
  • First Online:
Field-Driven Micro and Nanorobots for Biology and Medicine

Abstract

Micro-/nanorobots that can autonomously propel in liquid media have attracted tremendous attention due to their unique properties stemming from mobility. By controlling the motion of functionalized microrobots, applications like environmental remediation, in vivo imaging, and drug delivery can be realized with high efficiency. In this chapter, the applications of microrobots in gastrointestinal tract (GI tract) is summarized and discussed. Based on the acidic environment, potential propulsion mechanisms in GI tract are demonstrated, followed by typical examples of microrobots propelling in GI tract. After entering and propelling in GI tract, with multiple imaging methods, the location of microrobots is monitored, which is crucial for following microrobot-based cargo delivery and therapy in both the stomach and intestines. Then biocompatibility and biodegradability of microrobots for in vivo applications are discussed. Finally, the challenges before practical application are summarized and offered some perspectives on possible solutions. This chapter is expected to help understand the development of microrobots in GI tract and spark new ideas that may promote large-scale in vivo application of microrobots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sengupta, S., Ibele, M. E., & Sen, A. (2012). Fantastic voyage: Designing self-powered nanorobots. Angewandte Chemie, International Edition, 51, 8434–8445.

    Article  Google Scholar 

  2. Wang, J. (2013). Nanomachines: Fundamentals and applications. Wiley.

    Book  Google Scholar 

  3. Sánchez, S., Soler, L., & Katuri, J. (2015). Chemically powered micro-and nanomotors. Angewandte Chemie International Edition, 54, 1414–1444.

    Article  Google Scholar 

  4. Xu, T., Gao, W., Xu, L. P., Zhang, X., & Wang, S. (2017). Fuel-free synthetic micro-/nanomachines. Advanced Materiels, 29, 1603250.

    Article  Google Scholar 

  5. Ismagilov, R. F., Schwartz, A., Bowden, N., & Whitesides, G. M. (2002). Autonomous movement and self-assembly. Angewandte Chemie International Edition, 41, 652–654.

    Article  Google Scholar 

  6. Medina-Sánchez, M., Schwarz, L., Meyer, A. K., Hebenstreit, F., & Schmidt, O. G. (2016). Cellular cargo delivery: Toward assisted fertilization by sperm-carrying micromotors. Nano Letters, 16, 555–561.

    Article  Google Scholar 

  7. Gao, W., Feng, X., Pei, A., Gu, Y., Li, J., & Wang, J. (2013). Seawater-driven magnesium based Janus micromotors for environmental remediation. Nanoscale, 5, 4696–4700.

    Article  Google Scholar 

  8. Jurado-Sánchez, B., Sattayasamitsathit, S., Gao, W., Santos, L., Fedorak, Y., Singh, V. V., Orozco, J., Galarnyk, M., & Wang, J. (2015). Self-propelled activated carbon Janus micromotors for efficient water purification. Small, 11, 499–506.

    Article  Google Scholar 

  9. Pan, D., Mou, F., Li, X., Deng, Z., Sun, J., Xu, L., & Guan, J. (2016). Multifunctional magnetic oleic acid-coated MnFe2O4/polystyrene Janus particles for water treatment. Journal of Materials Chemistry A, 4, 11768–11774.

    Article  Google Scholar 

  10. Alapan, Y., Bozuyuk, U., Erkoc, P., Karacakol, A. C., & Sitti, M. (2020). Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow. Science Robotics, 5.

    Google Scholar 

  11. de Ávila, B. E. F., Angsantikul, P., Li, J., Gao, W., Zhang, L., & Wang, J. (2018). Micromotors go in vivo: from test tubes to live animals. Advanced Functional Materials, 28, 1705640.

    Article  Google Scholar 

  12. Wu, Z., Chen, Y., Mukasa, D., Pak, O. S., & Gao, W. (2020). Medical micro/nanorobots in complex media. Chemical Society Reviews.

    Google Scholar 

  13. Gao, W., Pei, A., & Wang, J. (2012). Water-driven micromotors. ACS Nano, 6, 8432–8438.

    Article  Google Scholar 

  14. Chen, C., Karshalev, E., Guan, J., & Wang, J. (2018). Magnesium-based micromotors: Water-powered propulsion, multifunctionality, and biomedical and environmental applications. Small, 14, 1704252.

    Article  Google Scholar 

  15. Kong, F., & Singh, R. P. (2008). Disintegration of solid foods in human stomach. Journal of Food Science, 73, R67–R80.

    Article  Google Scholar 

  16. Mou, F., Chen, C., Zhong, Q., Yin, Y., Ma, H., & Guan, J. (2014). Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS Applied Materials & Interfaces, 6, 9897–9903.

    Article  Google Scholar 

  17. Gao, W., Uygun, A., & Wang, J. (2012). Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media. Journal of the American Chemical Society, 134, 897–900.

    Article  Google Scholar 

  18. de Ávila, E.-F. B., Angsantikul, P., Li, J., Lopez-Ramirez, M. A., Ramírez-Herrera, D. E., Thamphiwatana, S., Chen, C., Delezuk, J., Samakapiruk, R., Ramez, V., Obonyo, M., Zhang, L., & Wang, J. (2017). Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nature Communication, 8, 1–9.

    Article  Google Scholar 

  19. Liang, Z., & Fan, D. (2018). Visible light–gated reconfigurable rotary actuation of electric nanomotors. Science Advances, 4, eaau0981.

    Article  Google Scholar 

  20. Liang, X., Mou, F., Huang, Z., Zhang, J., You, M., Xu, L., Luo, M., & Guan, J. (2020). Hierarchical microswarms with leader-follower-like structures: Electrohydrodynamic self-organization and multimode collective Photoresponses. Advanced Functional Materials, 30, 1908602.

    Article  Google Scholar 

  21. Wang, W., Castro, L. A., Hoyos, M., & Mallouk, T. E. (2012). Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano, 6, 6122–6132.

    Article  Google Scholar 

  22. Aghakhani, A., Yasa, O., Wrede, P., & Sitti, M. (2020). Acoustically powered surface-slipping mobile microrobots. Proceedings of the National Academy of Science USA, 117, 3469–3477.

    Article  Google Scholar 

  23. Ren, L., Nama, N., McNeill, J. M., Soto, F., Yan, Z., Liu, W., Wang, W., Wang, J., & Mallouk, T. E. (2019). 3D steerable, acoustically powered microswimmers for single-particle manipulation. Science Advances, 5, eaax3084.

    Article  Google Scholar 

  24. Xu, L., Mou, F., Gong, H., Luo, M., & Guan, J. (2017). Light-driven micro/nanomotors: From fundamentals to applications. Chemical Society Reviews, 46, 6905–6926.

    Article  Google Scholar 

  25. Dreyfus, R., Baudry, J., Roper, M. L., Fermigier, M., Stone, H. A., & Bibette, J. (2005). Microscopic artificial swimmers. Nature, 437, 862–865.

    Article  Google Scholar 

  26. Peyer, K. E., Zhang, L., & Nelson, B. J. (2013). Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale, 5, 1259–1272.

    Article  Google Scholar 

  27. Gao, W., Feng, X., Pei, A., Kane, C. R., Tam, R., Hennessy, C., & Wang, J. (2014). Bioinspired helical microswimmers based on vascular plants. Nano Letters, 14, 305–310.

    Article  Google Scholar 

  28. Gao, W., Dong, R., Thamphiwatana, S., Li, J., Gao, W., Zhang, L., & Wang, J. (2015). Artificial micromotors in the mouse’s stomach: A step toward in vivo use of synthetic motors. ACS Nano, 9, 117–123.

    Article  Google Scholar 

  29. Li, J., Thamphiwatana, S., Liu, W., de Ávila, E.-F. B., Angsantikul, P., Sandraz, E., Wang, J., Xu, T., Soto, F., Ramez, V., Wang, X., Gao, W., Zhang, L., & Wang, J. (2016). Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano, 10, 9536–9542.

    Article  Google Scholar 

  30. Servant, A., Qiu, F., Mazza, M., Kostarelos, K., & Nelson, B. J. (2015). Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Advanced Materials, 27, 2981–2988.

    Article  Google Scholar 

  31. Li, J., Angsantikul, P., Liu, W., de Ávila, E.-F. B., Thamphiwatana, S., Xu, M., Sandraz, E., Wang, X., Delezuk, J., Gao, W., Zhang, L., & Wang, J. (2017). Micromotors spontaneously neutralize gastric acid for pH-responsive payload release. Angewandte Chemie International Edition, 56, 2156–2161.

    Article  Google Scholar 

  32. Yan, X., Zhou, Q., Vincent, M., Deng, Y., Yu, J., Xu, J., Xu, T., Tang, T., Bian, L., Wang, Y. X. J., Kostarelos, K., & Zhang, L. (2017). Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Science Robotics, 2.

    Google Scholar 

  33. Wu, Z., Li, L., Yang, Y., Hu, P., Li, Y., Yang, S. Y., Wang, L. V., & Gao, W. (2019). A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Science Robotics, 4.

    Google Scholar 

  34. Walker, D., Käsdorf, B. T., Jeong, H. H., Lieleg, O., & Fischer, P. (2015). Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Science Advances, 1, e1500501.

    Article  Google Scholar 

  35. Wei, X., Beltrán-Gastélum, M., Karshalev, E., de Ávila, E.-F. B., Zhou, J., Ran, D., Angsantikul, P., Fang, R. H., Wang, J., & Zhang, L. (2019). Biomimetic micromotor enables active delivery of antigens for oral vaccination. Nano Letters, 19, 1914–1921.

    Article  Google Scholar 

  36. Karshalev, E., Zhang, Y., de Ávila, E.-F. B., Beltrán-Gastélum, M., Chen, Y., Mundaca-Uribe, R., Zhang, F., Nguyen, B., Tong, Y., Fang, R. H., Zhang, L., & Wang, J. (2019). Micromotors for active delivery of minerals toward the treatment of iron deficiency anemia. Nano Letters, 19, 7816–7826.

    Article  Google Scholar 

  37. Chen, C., Karshalev, E., Li, J., Soto, F., Castillo, R., Campos, I., Mou, F., Guan, J., & Wang, J. (2016). Transient micromotors that disappear when no longer needed. ACS Nano, 10, 10389–10396.

    Article  Google Scholar 

  38. Soto, F., Kupor, D., Lopez-Ramirez, M. A., Wei, F., Karshalev, E., Tang, S., Tehrani, F., & Wang, J. (2020). Onion-like multifunctional microtrap vehicles for attraction–trapping–destruction of biological threats. Angewandte Chemie International Edition, 59, 3480–3485.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Science Foundation (Grant No. 1931214) and Caltech Space-Health Innovation Fund by Translational Research Institute for Space Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

You, M., Mukasa, D., Gao, W. (2022). Microrobots in the Gastrointestinal Tract. In: Sun, Y., Wang, X., Yu, J. (eds) Field-Driven Micro and Nanorobots for Biology and Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-80197-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80197-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80196-0

  • Online ISBN: 978-3-030-80197-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics